

Board of Directors

REGULAR MEETING

July 8, 2025, at 6:00 p.m.

Be selfless, generous, and kind

Be creative, impactful, and unique

AGENDA

Regular Meeting of the Board of Directors 3021 Fullerton Road Rowland Heights, CA 91748 July 8, 2025 -- 6:00 PM

Agenda materials are available for public review at https://www.rwd.org/agendas-minutes/. Materials related to an item on this Agenda submitted after distribution of the Agenda packet are available for public review at the District office located at 3021 Fullerton Road, Rowland Heights, CA 91748.

CALL TO ORDER

PLEDGE OF ALLEGIANCE

ROLL CALL OF DIRECTORS

John Bellah, President Vanessa Hsu, Vice President Robert W. Lewis Anthony J. Lima Szu Pei Lu-Yang

ADDITION(S) TO THE AGENDA

PUBLIC COMMENT ON NON-AGENDA ITEMS

Any member of the public wishing to address the Board of Directors regarding items not on the agenda within the subject matter jurisdiction of the Board should do so at this time. With respect to items on the agenda, the Board will receive public comments at the time the item is opened for discussion, prior to any vote or other Board action. A three-minute time limit on remarks is requested.

Any person may make a request for a disability-related modification or accommodation needed for that person to be able to participate in the public meeting by telephoning Gabriela Palomares, Executive Services Manager, at (562) 383-2323, or writing to Rowland Water District, at 3021 Fullerton Road, Rowland Heights, CA 91748. Requests must specify the nature of the disability and the type of accommodation requested. A telephone number or other contact information should be included so that District staff may discuss appropriate arrangements. Anyone requesting a disability-related accommodation should make the request with adequate time prior to the meeting in order for the District to provide the requested accommodation.

Any member of the public wishing to participate in the meeting, who requires a translator to understand or communicate in English, should arrange to bring a translator with them to the meeting.

DIRECTOR REMOTE PARTICIPATION PURSUANT TO GOV. CODE §54953(f)

- Notifications Due to Just Cause
- Requests Due to Emergency Circumstances

1. PUBLIC HEARING: PUBLIC HEALTH GOALS REPORT

Recommendation: The Board of Directors open a public hearing to receive and respond to public comment regarding Rowland Water District's 2022-2024 Public Health Goals Report; and following the public comment period, approve and file the report as presented.

- **1.1** Open Public Hearing
- 1.2 Report by Staff
- **1.3** Receive Public Comment
- **1.4** Close Public Hearing
- 1.5 Consider Approval of Rowland Water District's 2022-2024 Public Health Goals Report

2. CONSENT CALENDAR

All items under the Consent Calendar are considered to be routine matters, status reports, or documents covering previous Board instruction. The items listed on the Consent Calendar will be enacted by one motion unless separate discussion is requested.

2.1 Approval of the Minutes of Regular Board Meeting held on June 10, 2025

Recommendation: The Board of Directors approve the Minutes as presented.

2.2 <u>Demands on General Fund Account for June 2025</u>

Recommendation: The Board of Directors approve the demands on the general fund account as presented.

2.3 <u>Investment Report for May 2025</u>

Recommendation: The Board of Directors approve the Investment Report as presented.

- **2.4** Water Purchases for May 2025 For information only.
- **2.5** California Reservoir Conditions For information only.

Special Board Meeting: July 22, 2025 **Regular Board Meeting:** August 12, 2025

3. ACTION ITEMS

This portion of the Agenda is for items where staff presentations and Board discussions are needed prior to formal Board action.

3.1 Review and Approve Directors' Meeting Reimbursement for June 2025

Recommendation: The Board of Directors approve the Meeting Reimbursement as presented.

4. INFORMATIONAL ITEMS

- 4.1 Cross Connection Control Plan
- 4.2 California Special District Association (CSDA) Board of Directors Election Ballot
- 4.3 National Safety Council Occupational Excellence Achievement Award
- 4.4 Rowland Heights Community Coordinating Council Certificate of Appreciation

5. PUBLIC RELATIONS

5.1 Community Relations and Education Report

Gabriela Palomares

5.2 Communications Outreach

CV Strategies

6. DISCUSSION OF UPCOMING CONFERENCES, WORKSHOPS, OR EVENTS

(Including items that may have arisen after posting of the agenda)

7. LEGISLATIVE INFORMATION

Support for SB 72 (Caballero) – The California Water Plan: Long Term Supply Targets

8. REVIEW OF CORRESPONDENCE

9.	COM	IMITTEE & ORGANIZATION REPORTS (verbal reports)	
	9.1	Joint Powers Insurance Authority (JPIA)	Directors Lu-Yang/Hsu
	9.2	Three Valleys Municipal Water District (TVMWD)	Directors Lima/Bellah
	9.3	Association of California Water Agencies (ACWA)	Directors Lewis/Bellah
	9.4	Puente Basin Water Agency (PBWA)	Directors Lewis/Lima
	9.5	Project Ad-Hoc Committee	Directors Lima/Lu-Yang
	9.6	Regional Chamber of Commerce-Government Affairs Committee	Directors Bellah/Lewis
	9.7	P-W-R Joint Water Line Commission	Directors Lima/Bellah
	9.8	Rowland Heights Community Coordinating Council (RHCCC)	Directors Lu-Yang/Bellah
	9.9	California Special District Association (CSDA) SGV Chapter	Director Bellah
	9.10	Local Agency Formation Commission (LAFCO)	Director Lewis
10	ОТН	ER REPORTS AND COMMENTS	
10.	10.1	Finance Report	Mrs. Malner
	10.2	Operations Report	Mr. Davidson
	10.3	Project Updates	Mr. Moisio
	10.4	Personnel Report	Mr. Coleman

12. CLOSED SESSION

11. ATTORNEY'S REPORT

a. CONFERENCE WITH LEGAL COUNSEL – EXISTING LITIGATION [§54956.9] Paragraph (1) of subdivision (d) of §54956.9 Haste, et al. vs Rowland Water District

b. CONFERENCE WITH LEGAL COUNSEL - ANITICIPATED LITIGATION Initiation of litigation pursuant to paragraph (4) of subdivision (d) of Section 54956.9: One case.

Mr. Joseph Byrne

13. RECONVENE/REPORT ON CLOSED SESSION

General Manager's and Directors' Comments

Future Agenda Items

Late Business

No action shall be taken on any items not appearing on the posted agenda, except upon a determination by a majority of the Board that an emergency situation exists, or that the need to take action arose after the posting of the agenda.

ADJOURNMENT

President John Bellah, Presiding

ROWLAND WATER DISTRICT

TO: Honorable President and Members of the Board

SUBMITTED BY: Tom Coleman, General Manager

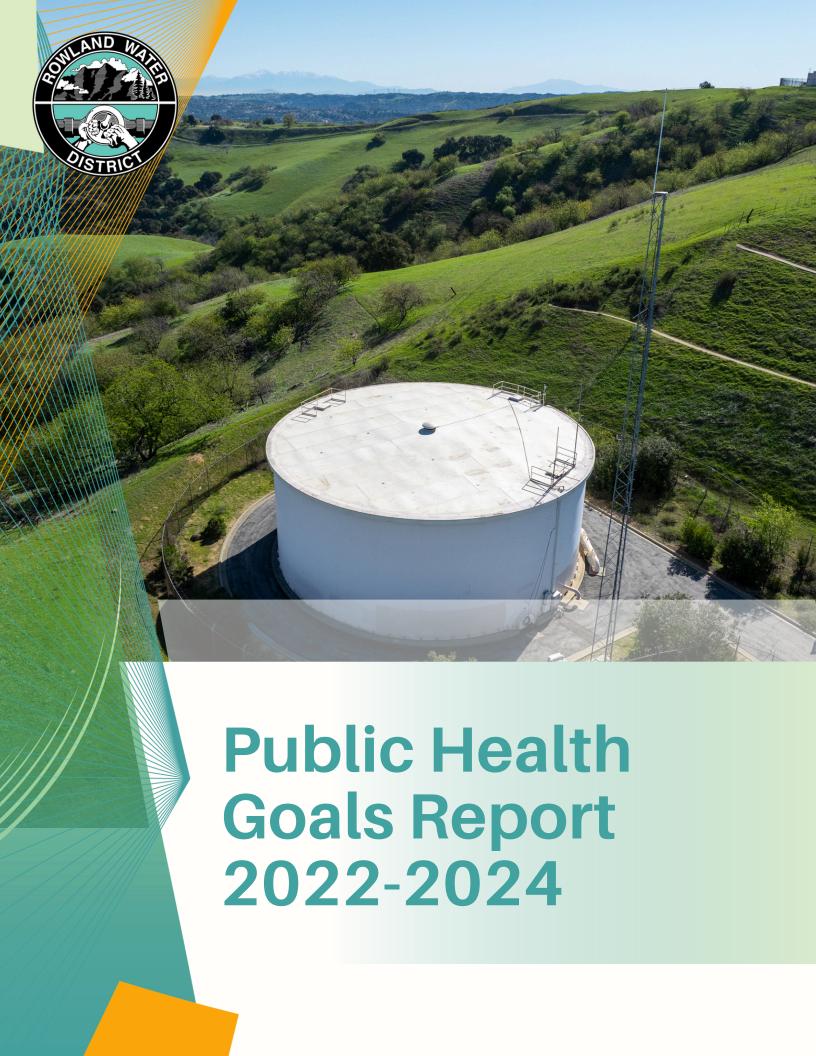
PREPARED BY: Elisabeth Mendez, Compliance & Safety Manager

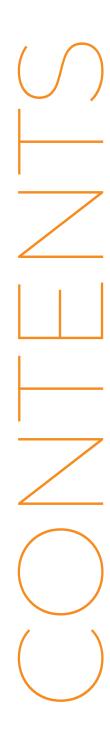
SUBJECT: Public Hearing- 2022-2024 Public Health Goals Report

PURPOSE:

Rowland Water District (the District) is required to hold a public hearing to allow the District's Board of Directors to receive and respond to community input regarding the District's 2022-2024 Public Health Goals (PHG) Report; and to approve and file the 2022-2024 PHG Report.

BACKGROUND:


Pursuant to the requirements of California Health and Safety Code 116470(b), every three years the District and other public water systems serving more than 10,000 service connections must prepare a PHG Report. The report is intended to provide information to the public in addition to the District's Annual Water Quality Report, on the detection of any contaminates above the PHGs. The law requires that a public hearing be held (which can be part of a regularly scheduled public meeting) for the purpose of accepting and responding to public comment on the report. Staff has prepared the 2022-2024 PHG Report and made it available on the District's website for public review on July 1, 2025.


The PHG Report compares the District's drinking water quality with PHGs adopted by California Environmental Protection Agency (CA-EPA) Office of Environmental Health Hazard Assessment (OEHHA), and with maximum contaminant level goals (MCLGs) adopted by the US EPA. The report includes a numerical public health risk, the category or type of risk, best available treatment technology (BATs), and cost estimates associated with constituents detected above a PHG or MCLG. The PHG report demonstrates our water system complies with all of the health-based drinking water standards and maximum contaminant levels (MCLs) required by the California Division of Drinking Water and the US EPA. No additional actions are recommended.

RECOMMENDATION: It is recommended that the Board of Directors hold a public hearing to receive comments on the District's 2022-2024 PHG Report. After the public hearing is concluded, the Board is requested to approve and file the 2022-2024 Public Health Goals Report.

ATTACHMENT:

2022-2024 Public Health Goals Report

- Ol. Background
- O2. What are Public Health Goals?
- 03. Water Quality Data Considered
- 04. Guidelines Followed
- 05. Best Available Treatment Technology and Cost Estimates
- 06. Constituents Detected that Exceed a PHG or a MCLG
 - Arsenic
 - **Bromate**
 - Chromium VI
 - Gross Alpha Particle Activity
 - Gross Beta Particle Activity
 - N-Nitroso Dimethylamine
 - Perchlorate
 - Radium-226
 - Radium-228
 - Perfluorooctanesulfonic Acid (PFOS)
 - Perfluorooctanoic Acid (PFOA)
 - Tetrachloroethylene
 - Trichloroethylene (TCE)
 - Uranium
- 07. Recommendations for Further Action
- 08. EXHIBIT A: CA HEALTH & SAFETY CODE 116470 (B)
- **O9.** EXHIBIT B: MCL's, DLRs, and PHGs for Regulated Drinking Water Contaminants
- 10. EXHIBIT C: Annual Water Quality Reports: 2022-2024

BACKGROUND

Provisions of the California Health and Safety Code 116470 (Exhibit A) specify that RWD, and other water utilities serving more than 10,000 service connections prepare a report by July 1, 2025, if their water quality measurements have exceeded any Public Health Goals (PHGs). PHGs are non-enforceable goals established by the California Environmental Protection Agency's (Cal-EPA) Office of Environmental Health Hazard Assessment (OEHHA). The law also requires that where OEHHA has not adopted a PHG for a constituent, the water suppliers are to use the Maximum Contaminant Level Goals (MCLGs) adopted by the United States Environmental Protection Agency (US EPA). Only constituents that have a California primary drinking water standard and for which either a PHG or MCLG has been set are to be addressed. Exhibit B provides a list of all regulated constituents with the MCLs and PHGs.

If a constituent was detected in the District's water supply between 2022 through 2024 at a level exceeding an applicable PHG or MCLG, this report provides the information required by law. Included is the numerical public health risk associated with the MCL and the PHG or MCLG, the category or type of risk to health that could be associated with each constituent, the best treatment technology available that could be used to reduce the constituent level, and an estimate of the cost to install that treatment if it is appropriate and feasible.

WHAT ARE PUBLIC HEALTH GOALS?

PHGs are set by OEHHA, which is part of Cal-EPA, and are based solely on public health risk considerations. None of the practical risk-management factors that are considered by the USEPA or the State Water Resources Control Board, Division of Drinking Water (DDW) in setting drinking water standards (MCLs) are considered in setting the PHGs. These factors include analytical detection capability, treatment technology availability, costs and benefits. The PHGs are not enforceable and are not required to be met by any public water system. MCLGs are the federal equivalent to PHGs.

WATER QUALITY DATA CONSIDERED

The District receives its water supply from the Metropolitan Water District of Southern California (MWD), Three Valleys Municipal Water District (TVMWD) Miramar Plant, TVMWD Groundwater, and California Domestic Water Company (CDWC). All of the water quality data collected from the District's drinking water system between 2022 and 2024 for purposes of determining compliance with drinking water standards were considered. This data was all summarized in the District's 2022, 2023, and 2024 Annual Water Quality Reports, which are all accessible on the District's website (www.rwd.org/water-quality). Please see Exhibit C for the District's 2022, 2023, and 2024 Annual Water Quality Reports.

GUIDELINES FOLLOWED

The Association of California Water Agencies (ACWA) formed a workgroup that prepared guidelines for water utilities to use in preparing these required reports. The ACWA guidelines were used in the preparation of RWD's report. No guidance was available from state regulatory agencies.

BEST AVAILABLE TREATMENT TECHNOLOGY AND COST ESTIMATES

Both the USEPA and DDW adopt what are known as Best Available Technologies or BATs, which are the best known methods of reducing contaminant levels to the MCL. Costs can be estimated for such technologies. However, since many PHGs and all MCLGs are set much lower than the MCL, it is not always possible or feasible to determine what treatment is needed to further reduce a constituent downward to or near the PHG or MCLG, many of which are set at zero. Estimating the costs to reduce a constituent to zero is difficult, if not impossible, because it is not possible to verify by analytical means that the level has been lowered to zero. In some cases, installing treatment to try to further reduce very low levels of one constituent may have adverse effects on other aspects of water quality.

CONSTITUENTS DETECTED THAT EXCEED A PHG OR A MCLG:

The following is a discussion of constituents that were detected in one or more of our drinking water sources at levels above the PHG, or if no PHG, above the MCLG.

2022

- Bromate
- Gross Beta Particle Activity
- Perchlorate
- Radium-226
- Perfluorooctanesulfonic Acid (PFOS)
- Perfluorooctanoic Acid (PFOA)
- Tetrachloroethylene (PCE)
- Uranium

2023

- Arsenic
- Bromate
- Chromium VI
- Gross Beta Particle Activity
- N-Nitroso Dimethylamine
- Perchlorate
- Radium-226
- Radium-228
- Perfluorooctanesulfonic Acid (PFOS)
- Tetrachloroethylene (PCE)
- Uranium

2024

- Bromate
- Chromium VI
- Gross Alpha Particle Activity
- Gross Beta Particle Activity
- Perchlorate
- Radium-226
- Radium-228
- Perfluorooctanesulfonic Acid (PFOS)
- Perfluorooctanoic Acid (PFOA)
- Tetrachloroethylene (PCE)
- Trichloroethylene (TCE)
- Uranium

ARSENIC

Arsenic is a naturally-occurring mineral in soils. The PHG for arsenic is 0.004 parts per billion (ppb), and the MCL is 10 ppb. The category of health risk associated with arsenic is that people who drink water containing levels above the MCL throughout their lifetime could experience an increased risk of developing cancer. The numerical health risk for the PHG is one in a million, and the numerical health risk for the MCL is 2.5 per one thousand

In 2023 Arsenic was detected in CDWC's water sources. The levels detected were below the MCL at all times. The BATs to lower the level of arsenic to below the PHG of 0.004 ppb are ion exchange, reverse osmosis, and

coagulation/filtration. The estimated cost of treatment with ion exchange is about \$0.67 per 1,000 gallons, the total estimated annual treatment cost is approximately \$224,448.

BROMATE

For Bromate, the PHG is 0.0001 ppb and the MCL is .010 ppb. Some people who drink water containing Bromate in excess of the MCL over many years could experience an increased risk of developing cancer. The numerical health risk for the PHG is one in a million, and the numerical health risk for the MCL is one per ten thousand.

Bromate was detected in the District's MWD imported water supply in 2022-2024. Bromate levels in the District's water were consistently below MCL; however, in 2022-2024, results were the above the PHG. The most common source of Bromate is as a byproduct of drinking water disinfection through ozonation. The BATs identified to lower Bromate levels to below the MCL are granular activated carbon (GAC), reverse osmosis, and ozone dosing. The estimated cost for these methods of treatment range from \$0.17 to \$9.00 per 1,000 gallons of treated water or an annual cost of \$162,292 to \$8,702,424 per year.

CHROMIUM VI

The source of hexavalent chromium in water supplies is mainly from the erosion of natural deposits; transformation of naturally occurring trivalent chromium to hexavalent chromium by natural processes and human activities such as discharges from electroplating factories, leather tanneries, wood preservation, chemical synthesis, refractory production, and textile manufacturing facilities. The PHG for hexavalent chromium is 0.02 mg/L and the MCL is 10 mg/L. The category of health risk associated with hexavalent chromium and the reason that a drinking water standard was adopted for it is that some people who drink water containing hexavalent chromium in excess of the MCL over many years may have an increased risk of getting cancer. The numerical health risk for hexavalent chromium at the PHG of 0.02 mg/L is one excess cancer case per one million people over a lifetime of exposure. The numerical health risk at the MCL of 10 mg/L is five excess cancer cases per 10,000 people over a lifetime of exposure.

Hexavalent chromium has been detected at levels above the PHG in 2023 in CDWC and 2024 in TVMWD Groundwater and CDWC. Detected levels of hexavalent chromium were below the MCL at all times. The District is in full compliance with hexavalent chromium drinking water standards. BAT for lowering hexavalent chromium below the PHG are coagulation/filtration, ion exchange, lime softening, and reverse osmosis. Since hexavalent chromium concentrations are already below the MCL, implementing BAT is not required. The estimated cost for coagulation filtration is \$0.45 per 1,000 gallons treated or about \$173,319 per year.

GROSS ALPHA PARTICLE ACTIVITY

Certain minerals are radioactive and may emit a form of radiation known as alpha radiation. The source of gross alpha particle activity in water supplies is mainly from the erosion of natural deposits. A PHG for gross alpha particles has not been established. The MCL is 15 pCi/L. The category of health risk associated with gross alpha particles and the reason that a drinking water standard was adopted for it is that some people who drink water containing alpha emitters in excess of the MCL over many years may have an increased risk of getting cancer. The numerical health risk for gross alpha particles at the MCLG of 0 pCi/L is zero and an MCL of 15 pCi/L may increase the risk of cancer over a lifetime of exposure.

Gross alpha particles have been detected above the MCL in 2024 in CDWC. Detected levels of gross alpha particles were below the MCL at all times. RWD is in full compliance with gross alpha particle drinking water standards. BAT for lowering gross alpha particle activity below the PHG is reverse osmosis. Since gross alpha particle activity are already below the MCL, implementing BAT is not required because Gross Beta levels remain well within regulatory safety limits, and no samples exceeded the MCL, no additional treatment action is currently needed.

GROSS BETA PARTICLE ACTIVITY

Certain minerals are radioactive and may emit a form of radiation known as photons and beta radiation. There is no PHG for Gross Beta Particle Activity as the OEHHA concluded in 2003 that a PHG for this constituent is not practical. The PHG set by the US EPA is 0 pCi/L and the MCL is 50 pCi/L. The DDW and US EPA, which set drinking water standards, have determined Gross Beta Particle Activity is a health concern at certain levels of exposure. This radiological constituent is a naturally occurring contaminant in some groundwater and surface water supplies. The numerical health risk for gross alpha particles at the PHG of 0 pCi/L is zero and an MCL of 50 pCi/L may increase the risk of cancer over a lifetime of exposure.

Gross Beta Particle Activity was detected throughout 2022-2024 in MWD's imported water supply and TVMWD Miramar Plant supply, at levels above the PHG of 0 but well below the MCL of 50 pCi/L at all times. The BATs identified to treat Gross Beta Particle Activity are ion exchange and reverse osmosis. The most effective method to consistently remove Gross Beta Particle Activity is to utilize reverse osmosis treatment. The estimated cost for this method of treatment ranges from \$1.05 to \$9.00 per 1,000 gallons of treated water or annual cost of \$2,730,165 to \$23,351,623 per year.

N-NITROSO DIMETHYLAMINE

N-Nitroso Dimethylamine (NDMA) is a chemical classified as a probable human carcinogen by both the U.S. EPA and OEHHA. Although there is currently no federal or state MCL for NDMA, CA has established a Notification Level of 10 nanograms per liter (ng/L) to the SWRCB. OEHHA has established a PHG of 0.003 ng/L. This health risk has been associated with liver damage and increased cancer risk, which corresponds to a one-in-a-million cancer risk over a lifetime of exposure.

NDMA has been detected in MWD in 2023 below the Notification Level and did not trigger regulatory response. Because of its potential health risks, NDMA is closely monitored. The BATs for removing NDMA from drinking water include ultraviolet (UV) oxidation, reverse osmosis, and, in some cases, granular activated carbon (GAC) as a pre-treatment method. Of these, UV oxidation is considered the most effective. The estimated cost for implementing UV oxidation treatment ranges from \$1.50 to \$3.50 per 1,000 gallons of water treated or an annual cost of \$1,449,043 to \$3,381,101.

PERCHLORATE

Perchlorate is a regulated inorganic chemical that can interfere with the normal function of the thyroid gland by inhibiting the uptake of iodide, which is essential for hormone production and normal growth and development. Sensitive populations, such as pregnant women and infants, may be particularly vulnerable to its effects. For perchlorate, the PHG is 1 ppb and the MCL is 6 ppb. The category health risk for Perchlorate above the MCL over many years are at a higher risk of developing endocrine toxicity (affects the thyroid) as well as developmental toxicity (causes neurodevelopmental deficits).

Perchlorate was detected in CDWC from 2022-2024. All detections were below the MCL and did not require formal notification or corrective action; however, perchlorate continues to be monitored due to its potential health impacts. The BATs identified to lower Perchlorate levels is ion exchange. The estimated cost for this method of treatment ranges from \$1.05 to \$9.00 per 1,000 gallons of treated water or an annual cost of \$352,519 to \$3,016,616 per year.

RADIUM-226

The PHG for Radium-226 is 0.05 pCi/L and the MCL is 5 pCi/L. This radiological constituent is a naturally occurring contaminant in some groundwater and surface water supplies. The category health risk for Radium-226, is that some people who drink water containing levels above the MCL over many years could experience an increased risk of developing cancer. The numerical health risk for Radium-226 at the PHG of 0.05 pCi/L is one excess cancer case per one million people over a lifetime of exposure. The numerical health risk for Radium-226 at the MCL of 5 pCi/L is one excess cancer case per ten thousand people over a lifetime of exposure.

Radium-226 was detected in CDWC in 2024 and in TVMWD Ground Water in 2023 and 2024. The levels detected were below the MCL at all times. The BATs identified to lower Radium-226 is ion exchange, reverse osmosis, and lime softening. The estimated cost for this method of treatment ranges from \$1.05 to \$9.00 per 1,000 gallons of treated water or an annual cost of \$2,065,107 to \$17,668,974 per year.

RADIUM-228

The source of Radium-228 in water supplies is mainly from the erosion of natural deposits. A PHG for Radium-228 is 0.019 pCi/L and the MCL is 5 pCi/L (combined Ra226+228). The category of health risk associated with Radium-228 in excess of the MCL over many years may have an increased risk of getting cancer. The numerical health risk for Radium-228 at the PHG of 0.019 pCi/L is one excess cancer case per one million people over a

lifetime of exposure, and the MCL of 5 pCi/L (combined Ra226+228) is three excess cancer cases per ten thousand people over a lifetime of exposure.

In 2023, Radium-228 was detected in some samples from TVMWD's Miramar and groundwater sources, and in 2024, it was also detected in samples from TVMWD groundwater and CDWC. While some of the detected levels exceeded the PHG, all results remained below the MCL. BATs for removing Radium-228 include reverse osmosis, ion exchange, and lime softening. These treatment methods are highly effective but can be costly to implement, particularly when existing levels are already considered safe. Because all detections were below regulatory limits and the water complies with applicable health standards, no additional treatment is currently required.

PERFLUOROOCTANESULFONIC ACID (PFOS)

Perfluorooctane sulfonic acid (PFOS) is a synthetic chemical that belongs to the group of substances known as per- and polyfluoroalkyl substances (PFAS). PFOS is widely used in consumer products such as stain repellents, firefighting foams, and non-stick coatings. The PHG for PFOS is 0.000001 ppm, or 1 ppt. California has not yet established an MCL for PFOS, but notification and response levels are in place for monitoring and public awareness. CA previously established a Notification Level of 6.5 ppt to the SWRCB. The health risk associated with PFOS exposure results in developmental issues, immune system suppression, thyroid disruption, and increased risk of certain cancers.

From 2022 to 2024, PFOS was detected in samples collected from CDWC sources, and in 2024, it was also detected in TVMWD groundwater. Some results exceeded above the PHG but below the state's response level, all results remain within regulatory requirements, and no formal action has been triggered. BATs for PFOS removal include GAC, ion exchange, and reverse osmosis. These methods are effective in reducing PFOS to non-detectable levels. Because current PFOS levels are below the enforceable MCL, and the water system remains in compliance with all applicable health regulations, no additional treatment is currently required. RWD remains committed to ongoing monitoring and proactively PFOS levels and evaluating treatment options as regulatory standards continue to evolve.

PERFLUORROOCTANOIC ACID (PFOA)

Perfluorooctanoic acid (PFOA) is a man-made chemical that is part of the broader group of per- and polyfluoroalkyl substances (PFAS). It was commonly used in products such as non-stick cookware, water-repellent fabrics, and cosmetics. The EPA established an MCL of .007 ppt. While CA has not formally established a PHG for PFOA, a previous Notification Level was set at 5.1 ppt. PFOA is highly persistent in the environment and the human body and has been linked to several potential health risks, including developmental effects, liver and kidney damage, immune system impacts, and increased risk of certain cancers.

PFOA was detected in CDWC sources in 2022 and in 2024 in TVMWD groundwater. Some of the detected levels exceeded the current federal MCL; however, all detections were below the current California Notification or Response Levels. RWD continues to monitor PFOA in accordance with state and federal guidelines and is committed to ensuring that all sources remain in compliance with drinking water standards.

The BATs for reducing PFOA in drinking water include GAC, ion exchange, and reverse osmosis. These methods are capable of removing PFOA to non-detectable levels.

Since PFOA levels were detected below the enforceable federal standard and RWD's water continues to meet all health-based regulations, no additional treatment is currently required. However, RWD remains proactive in its monitoring efforts and prepared to implement treatment solutions if future regulatory requirements or water quality conditions warrant additional action.

TETRACHLOROETHYLENE (PCE)

Tetrachloroethylene, also known as perchloroethylene (PCE), is a perchlorinated two-carbon olefin. The primary use of PCE is as a chemical intermediate for the production of chlorofluorocarbons and as a solvent used in cleaning operations (metal cleaning, vapor degreasing, and dry cleaning). In addition, numerous household products contain some level of PCE. PCE has a PHG of 0.06 ppb and an MCL of 5 ppb. The category health risk for PCE containing levels above the MCL over many years could experience an increased risk of developing cancer. The numerical health risk for PCE at the PHG of 0.06 ppb is one excess cancer case per million people over a lifetime of exposure. The numerical health risk for PCE at the MCL of 5 ppb is eight excess cancer cases per one hundred thousand people over a lifetime of exposure.

PCE was detected in CDWC from 2022-2024. The BATs for treating PCE include the following treatment techniques: Granular Activated Carbon (GAC) and Packed Tower Aeration. The cost to treat PCE by Packed Tower Aeration would be \$0.38 to \$1.42 per 1,000 gallons of water treated. If GAC were selected as the BAT to further reduce PCE an additional cost could range from \$0.36 to \$3.04 per 1,000 gallons of water treated. The estimated cost for this method of treatment ranges from \$0.74 to \$4.46 per 1,000 gallons of treated water or an annual cost of \$247,653 to \$1,493,577 per year.

TRICHLOROETHYLENE (TCE)

Trichloroethylene (TCE) is a volatile organic compound (VOC) that has historically been used as an industrial solvent for metal degreasing and in the manufacture of other chemicals. TCE can enter drinking water sources through industrial discharges, improper disposal, or leaching from contaminated soil. The PHG for TCE is 1.7 ppb and the MCL is 5 ppb. Long-term exposure to has been associated with serious health risks, and an increased risk of certain cancers such as kidney and liver cancer.

TCE was detected in 2024 in CDWC. While detected concentrations exceeded the PHG, all levels remained below the regulatory MCL, and therefore no mandatory treatment or public notification was required. BATs for reducing TCE is packed tower aeration and GAC. Both methods are highly effective in removing volatile organic compounds like TCE from water supplies. The estimated cost for TCE treatment varies depending on the selected method and system size, ranging from approximately \$0.80 to \$3.00 per 1,000 gallons of treated water, the estimated annual cost of treatment could range from \$267,997 to \$1,004,990 per year. Since TCE concentrations in RWD's water sources have remained below the enforceable standard and all health-based regulations continue to be met, no additional treatment is currently necessary. RWD remains committed to monitoring this compound and protecting water quality through preventive and responsive actions.

URANIUM

The PHG for Uranium is 0.43 pCi/L and the MCL is 20 pCi/L. This radiological constituent is a naturally occurring contaminant in some groundwater and surface water supplies. The category of health risk associated with Uranium, and the reason that a drinking water standard was adopted for it, is that some people who drink water containing Uranium in excess of the MCL over many years may have kidney problems or an increased risk of cancer. The numerical health risk associated with the PHG 0.43 pCi/L is one excess cancer case per million people over a lifetime of exposure. The numerical health risk for uranium at the MCL of 20 pCi/L is five excess cancer cases per one hundred thousand people over a lifetime of exposure.

In 2022-2024 Uranium was detected in MWD, additionally, in 2023-2024 it was also detected in CDWC and TVMWD Groundwater water supplies. The levels detected in RWD's water supplies were above the PHG; however, the levels were below the MCL at all times. The BATs identified to treat Uranium are coagulation/filtration, ion exchange, and reverse osmosis. The most effective method to consistently remove Uranium to the PHG is to utilize reverse osmosis treatment. The cost for removing Uranium is the same cost as Gross Beta Particle Activity, listed above.

RECOMMENDATIONS FOR FURTHER ACTION

RWD's drinking water quality meets all DDW and US EPA drinking water standards set to protect public health. To further reduce the levels of the constituents identified in this report would require additional costly treatment processes for constituents that are already significantly below the health-based MCLs established to provide "safe drinking water." The effectiveness of the treatment processes to provide any significant reduction in constituent levels at these already low values is uncertain. The health protection benefits of these further hypothetical reductions are not at all clear and may not be quantifiable. Therefore, no action is proposed.

CA Health & Safety Code Section 116470 (b)

California Health and Safety Code §116470 (b)

On or before July 1, 1998, and every three years thereafter, public water systems serving more than 10,000 service connections that detect one or more contaminants in drinking water that exceed the applicable public health goal, shall prepare a brief written report in plain language that does all of the following:

- (1) Identifies each contaminant detected in drinking water that exceeds the applicable public health goal.
- (2) Discloses the numerical public health risk, determined by the office, associated with the maximum contaminant level for each contaminant identified in paragraph (1) and the numerical public health risk determined by the office associated with the public health goal for that contaminant.
- (3) Identifies the category of risk to public health, including, but not limited to, carcinogenic, mutagenic, teratogenic, and acute toxicity, associated with exposure to the contaminant in drinking water, and includes a brief plainly worded description of these terms.
- (4) Describes the best available technology, if any is then available on a commercial basis, to remove the contaminant or reduce the concentration of the contaminant. The public water system may, solely at its own discretion, briefly describe actions that have been taken on its own, or by other entities, to prevent the introduction of the contaminant into drinking water supplies.
- (5) Estimates the aggregate cost and the cost per customer of utilizing the technology described in paragraph (4), if any, to reduce the concentration of that contaminant in drinking water to a level at or below the public health goal.
- (6) Briefly describes what action, if any, the local water purveyor intends to take to reduce the concentration of the contaminant in public drinking water supplies and the basis for that decision.
- (c) Public water systems required to prepare a report pursuant to subdivision (b) shall hold a public hearing for the purpose of accepting and responding to public comment on the report. Public water systems may hold the public hearing as part of any regularly scheduled meeting.
- (d) The department shall not require a public water system to take any action to reduce or eliminate any exceedance of a public health goal.
- (e) Enforcement of this section does not require the department to amend a public water system's operating permit.
- (f) Pending adoption of a public health goal by the Office of Environmental Health Hazard Assessment pursuant to subdivision (c) of Section 116365, and in lieu thereof, public water systems shall use the national maximum contaminant level goal adopted by the United States Environmental Protection Agency for the corresponding contaminant for purposes of complying with the notice and hearing requirements of this section.
- (g) This section is intended to provide an alternative form for the federally required consumer confidence report as authorized by 42 U.S.C. Section 300g-3(c).

MCL's, DLRs, and PHGs for Regulated Drinking Water Contaminants

MCLs, DLRs, and PHGs for Regulated Drinking Water Contaminants

Last Update: November 2024

This table includes:

- California's maximum contaminant levels (MCLs)
- Detection limits for purposes of reporting (DLRs)
- Public health goals (PHGs) from the Office of Environmental Health Hazard Assessment (OEHHA)
- The PHGs for NDMA, PFOA and PFOS (which are not yet regulated in California) are included at the bottom
 of this table.
- The Federal MCLs for PFOA and PFOS are also listed at the end of this table.

Units are in milligrams per liter (mg/L), unless otherwise noted.

Chemicals with MCLs in 22 CCR §64431 - Inorganic Chemicals

Regulated Contaminant	MCL	DLR	PHG	Date of PHG
Aluminum	1	0.05	0.6	2001
Antimony	0.006	0.006	0.001	2016
Arsenic	0.010	0.002	0.000004	2004
Asbestos (MFL = million fibers per liter; for fibers >10 microns long)	7 MFL	0.2 MFL	7 MFL	2003
Barium	1	0.1	2	2003
Beryllium	0.004	0.001	0.001	2003
Cadmium	0.005	0.001	0.00004	2006
Chromium, Total	0.05	0.01	withdrawn Nov. 2001	1999
Chromium, Hexavalent	0.01	0.0001	0.00002	2011
Cyanide	0.15	0.1	0.15	1997
Fluoride	2	0.1	1	1997
Mercury (inorganic)	0.002	0.001	0.0012	1999 (rev2005)*
Nickel	0.1	0.01	0.012	2001
Nitrate (as nitrogen, N)	10 as N	0.4	45 as NO3 (=10 as N)	2018
Nitrite (as N)	1 as N	0.4	1 as N	2018
Nitrate + Nitrite (as N)	10 as N		10 as N	2018
Perchlorate	0.006	0.004	0.001	2015
Selenium	0.05	0.005	0.03	2010
Thallium	0.002	0.001	0.0001	1999 (rev2004)

^{*}OEHHA's review of this chemical during the year indicated (rev20XX) resulted in nochange in the PHG.

Radionuclides with MCLs in 22 CCR §64441 and §64443 - Radioactivity

Units are picocuries per liter (pCi/L), unless otherwise stated; n/a = not applicable

Regulated Contaminant	MCL	DLR	PHG	Date of PHG
Gross alpha particle activity - OEHHA concluded in 2003 that a PHG was notpractical	15	3	none	n/a
Gross beta particle activity - OEHHA concluded in 2003 that a PHG was notpractical	4 mrem/yr	4	none	n/a
Radium-226		1	0.05	2006
Radium-228		1	0.019	2006
Radium-226 + Radium-228	5			
Strontium-90	8	2	0.35	2006
Tritium	20,000	1,000	400	2006
Uranium	20	1	0.43	2001

Chemicals with MCLs in 22 CCR §64444 - Organic Chemicals

(a) Volatile Organic Chemicals (VOCs)

Regulated Contaminant	MCL	DLR	PHG	Date of PHG
Benzene	0.001	0.0005	0.00015	2001
Carbon tetrachloride	0.0005	0.0005	0.0001	2000
1,2-Dichlorobenzene	0.6	0.0005	0.6	1997 (rev2009)
1,4-Dichlorobenzene (p-DCB)	0.005	0.0005	0.006	1997
1,1-Dichloroethane (1,1-DCA)	0.005	0.0005	0.003	2003
1,2-Dichloroethane (1,2-DCA)	0.0005	0.0005	0.0004	1999 (rev2005)
1,1-Dichloroethylene (1,1-DCE)	0.006	0.0005	0.01	1999
Cis-1,2-Dichloroethylene	0.006	0.0005	0.013	2018
Trans-1,2-Dichloroethylene	0.01	0.0005	0.05	2018
Dichloromethane (Methylene chloride)	0.005	0.0005	0.004	2000
1,2-Dichloropropane	0.005	0.0005	0.0005	1999
1,3-Dichloropropene	0.0005	0.0005	0.0002	1999 (rev2006)
Ethylbenzene	0.3	0.0005	0.3	1997
Methyl tertiary butyl ether (MTBE)	0.013	0.003	0.013	1999
Monochlorobenzene	0.07	0.0005	0.07	2014
Styrene	0.1	0.0005	0.0005	2010
1,1,2,2-Tetrachloroethane	0.001	0.0005	0.0001	2003
Tetrachloroethylene (PCE)	0.005	0.0005	0.00006	2001
Toluene	0.15	0.0005	0.15	1999
1,2,4-Trichlorobenzene	0.005	0.0005	0.005	1999
1,1,1-Trichloroethane (1,1,1-TCA)	0.2	0.0005	1	2006
1,1,2-Trichloroethane (1,1,2-TCA)	0.005	0.0005	0.0003	2006
Trichloroethylene (TCE)	0.005	0.0005	0.0017	2009
Trichlorofluoromethane (Freon 11)	0.15	0.005	1.3	2014
1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	1.2	0.01	4	1997 (rev2011)
Vinyl chloride	0.0005	0.0005	0.00005	2000
Xylenes	1.75	0.0005	1.8	1997

(b) Non-Volatile Synthetic Organic Chemicals (SOCs)

Regulated Contaminant	MCL	DLR	PHG	Date of PHG
Alachlor	0.002	0.001	0.004	1997
Atrazine	0.001	0.0005	0.00015	1999
Bentazon	0.018	0.002	0.2	1999 (rev2009)
Benzo(a)pyrene	0.0002	0.0001	0.000007	2010
Carbofuran	0.018	0.005	0.0007	2016
Chlordane	0.0001	0.0001	0.00003	1997 (rev2006)
Dalapon	0.2	0.01	0.79	1997 (rev2009)
1,2-Dibromo-3-chloropropane (DBCP)	0.0002	0.00001	0.000003	2020
2,4-Dichlorophenoxyacetic acid (2,4-D)	0.07	0.01	0.02	2009
Di(2-ethylhexyl) adipate	0.4	0.005	0.2	2003
Di(2-ethylhexyl) phthalate (DEHP)	0.004	0.003	0.012	1997
Dinoseb	0.007	0.002	0.014	1997 (rev2010)
Diquat	0.02	0.004	0.006	2016
Endothal	0.1	0.045	0.094	2014
Endrin	0.002	0.0001	0.0003	2016
Ethylene dibromide (EDB)	0.00005	0.00002	0.00001	2003
Glyphosate	0.7	0.025	0.9	2007
Heptachlor	0.00001	0.00001	0.000008	1999
Heptachlor epoxide	0.00001	0.00001	0.000006	1999
Hexachlorobenzene	0.001	0.0005	0.00003	2003
Hexachlorocyclopentadiene	0.05	0.001	0.002	2014
Lindane	0.0002	0.0002	0.000032	1999 (rev2005)
Methoxychlor	0.03	0.01	0.00009	2010
Molinate	0.02	0.002	0.001	2008
Oxamyl	0.05	0.02	0.026	2009
Pentachlorophenol	0.001	0.0002	0.0003	2009
Picloram	0.5	0.001	0.166	2016
Polychlorinated biphenyls (PCBs)	0.0005	0.0005	0.00009	2007
Simazine	0.004	0.001	0.004	2001
Thiobencarb	0.07	0.001	0.042	2016
Toxaphene	0.003	0.001	0.00003	2003
1,2,3-Trichloropropane	0.000005	0.00005	0.0000007	2009
2,3,7,8-TCDD (dioxin)	3x10 ⁻⁸	5x10 ⁻⁹	5x10 ⁻¹¹	2010
2,4,5-TP (Silvex)	0.05	0.001	0.003	2014

Copper and Lead, 22 CCR §64672.3

Values referred to as MCLs for lead and copper are not actually MCLs; instead, they are called "Action Levels" under the lead and copper rule

Regulated Contaminant	MCL	DLR	PHG	Date of PHG
Copper	1.3	0.05	0.3	2008
Lead	0.015	0.005	0.0002	2009

Chemicals with MCLs in 22 CCR §64533 – Disinfection Byproducts

Regulated Contaminant	MCL	DLR	PHG	Date of PHG
Total Trihalomethanes	0.080			
Bromodichloromethane		0.0010	0.00006	2020
Bromoform		0.0010	0.0005	2020
Chloroform		0.0010	0.0004	2020
Dibromochloromethane		0.0010	0.0001	2020
Haloacetic Acids (five) (HAA5)	0.060			
Monochloroacetic Acid		0.0020		
Dichloroacetic Adic		0.0010		
Trichloroacetic Acid		0.0010		
Monobromoacetic Acid		0.0010		
Dibromoacetic Acid		0.0010		
Bromate	0.010	0.0050**	0.0001	2009
Chlorite	1.0	0.020	0.05	2009

^{**}The DLR for Bromate is 0.0010 mg/L for analysis performed using EPA Method 317.0 Revision 2.0, 321.8, or 326.0.

Chemicals with PHGs established in response to DDW requests. These are not currently regulated drinking water contaminants.***

Regulated Contaminant	MCL	DLR	PHG	Date of PHG
N-Nitrosodimethylamine (NDMA)			0.000003	2006
Perfluorooctanoic acid (PFOA)***			0.00000007	2024
Perfluorooctane sulfonic acid (PFOS)***			0.000001	2024

^{***}PFOA and PFOS have US EPA MCLGs and MCLs.

PFOA - MCLG is zero. MCL is 4 ng/L

PFOS - MCLG is zero. MCL is 4 ng/L

Annual Water Quality Reports: 2022, 2023, 2024

2022 ANNUAL

Water Quality Report

Published June 2023

This report contains important information about your drinking water. Translate it or speak with someone who understands it.

Este informe contiene in formación muy importante sobre su agua de beber. Tradúzcalo ó hable con alguien que lo entienda bien.

此報告中包含有關 您的飲用水的重要資 訊。您可請求翻譯或 與能夠讀懂此報告的 人交談。

해당 보고서에는 식수에 대한 중요한 정보가 포함되어 있습니다. 내용을 이해하는 사람이 번역하거나 혹은 그러한 사람과 의논해 주십시오. Naglalaman ang ulat na ito ng mahalagang impormasyon tungkol sa iyong inuming tubig. Isalin ito o makipag-usap sa isang taong nakauunawa rito.

Báo cáo này có các thông tin quan trọng về nước ướng của quý vị. Hãy biên dịch báo cáo hoặc thảo luận với người hiểu được báo cáo.

WHERE DOES YOUR WATER COME FROM?

In December 2002, Metropolitan Water District completed a source water assessment of its Colorado River and State Water Project supplies. Colorado River water is most vulnerable to the effects of recreation, urban and stormwater runoff, increasing urbanization in the watershed, and wastewater. The State Water Project is most vulnerable to the effects of urban and stormwater runoff, wildlife, agriculture, recreation, and wastewater. A copy of the assessment can be obtained by contacting Metropolitan Water District at (213) 217-6000.

In addition to these sources, Rowland Water District stores supplemental groundwater in the Main San Gabriel Basin and owns water rights in the Central Basin. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. Environmental Protection Agency's (USEPA) Safe Drinking Water Hotline at (800) 426-4791.

The sources of drinking water (both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive materials, and can pick up substances resulting from the presence of animals or from human activity. To ensure that water is safe to drink, the USEPA and State Water Resources Control Board, Division of Drinking Water (DDW) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. DDW regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Some people may be more vulnerable to contaminants found in drinking water than the general population. Immuno-compromised persons, such as those with cancer undergoing chemotherapy, people who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk for infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbial contaminants are available by calling the Safe Drinking Water Hotline at (800) 426-4791.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. RWD is responsible for providing high quality drinking water but cannot control the variety of materials used in household plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4791 or at www.epa.gov/lead.

CONTAMINANTS THAT MAY BE PRESENT IN SOURCE WATER

Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

Inorganic contaminants, such as salts and metals, that can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

Pesticides and herbicides that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

Organic chemical contaminants,

including synthetic and volatile organic chemicals that are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.

Radioactive contaminants

that can be naturally occurring or the result of oil and gas production and mining activities.

2022 SAMPLE RESULTS

For specific questions regarding this report or any additional questions related to District drinking water, please contact Elisabeth Mendez, Compliance & Safety Manager, at (562) 697-1726 or email info@rwd.org

Unless otherwise noted, the data presented in this table is from testing completed January 1 - December 31, 2022. The state requires the District to monitor for certain contaminants less than once per year because the concentrations are not expected to vary significantly from year to year. Some of the data, though representative of the water quality, is more than one year old. Unregulated contaminant monitoring helps EPA and the DDW determine where certain contaminants occur and whether they need to be regulated.

PRIMARY STANDARDS												
Parameter	State MCL [MRDL]	PHG (MCLG) [MRDLG]	State DLR (RL)	Range Average	Imported Surface Water Weymouth (MWD)	Imported Surface Water Miramar (TVMWD)	Groundwater Miramar (TVMWD)	Imported Groundwater (CDWC)	Units	Major Sources in Drinking Water		
CLARITY												
Combined Filter Effluent (CFE)	TT	NA	NA	Highest	0.04				NTU	Soil Runoff		
Turbidity (a)	TT			% <0.3	100%	100%	100%	ND	%	Con runon		
MICROBIOLOGICAL												
Total Coliform Bacteria (b) (Total Coliform Rule)	5%	(0)	NA		RW	/D Distribution System-Wi	de - 1.3%		%	Naturally present in the environment		
Fecal Coliform and E.coli (c) (Total Coliform Rule)	(c)	(0)	NA		RI	ND Distribution System-W	/ide - 0%		(c)	Human and animal fecal waste		
Heterotrophic Plate Count (e)	TT	NA	(1)	Range Average	ND	ND	ND	NC	CFU/mL	Naturally present in the environment		
INORGANIC CHEMICALS												
Aluminum (d) (p)	200	600	50	Range	58 – 240				nnh	Residue from water treatment process;		
Autilituiti (d) (p)	200	000	30	Average	156	ND	NR	ND	– ppb	erosion of natural deposits		
Arsenic	10	.004	2	Range					ppb	Erosion of natural deposits: glass &		
				Average	ND	ND	NR	ND	- ''	electronics production wastes Discharge of oil drilling waste and		
Barium	1000	2000	100	Range Average	107	ND	NR	120 –130 125	ppb	from metal refineries; erosion of		
				Average				120		natural deposits		
Copper (d) (f)	AL = 1.3	0.3	0.05		RWD Distribut	ibution System-Wide – 36 ion System-Wide – 90th F System-Wide – Samples I	Percentile Level = 0.12		ppm	Internal corrosion of household pipes; erosion of natural deposits		
Fluoride (m)	2	1	0.1	Range	0.6 – 0.8			.30 –.31	- ppm	Erosion of natural deposits; water		
Tidofide (III)	- 2	'	0.1	Average	0.7	0.17	NR	0.31	- РРП	additive that promotes strong teeth		
Lead (f)	AL = 15	0.2	5		RWD Distribu	RWD Distribution System-Wide — 36 Samples Collected RWD Distribution System-Wide — 90th Percentile Level = ND RWD Distribution System-Wide — Samples Exceeding Action Level = 0						
Nitroto (op N)	10	10	0.4	Range		ND – .57		3 – 7.5	nnm	Runoff and leaching from fertilizer		
Nitrate (as N)	10	10	0.4	Average	ND	0.35	NR	3.8	ppm	use; septic tank and sewage; erosion or natural deposits		
Nitrate + Nitrite (as N)	1	Range						nnm	Runoff and leaching from fertilizer use; septic tank and sewage; erosion			
INITIALE + INITIALE (45 IV)	'		0.4	Average	ND	ND	NR	ND	ppm	or natural deposits		
Parablarata (CIOA)	6	1	2	Range				.58 – 3.5	nnh	Industrial wasto discharge		
Perchlorate (CIO4) 6 1		2	Average	ND	ND	NR	2.06	ppb	Industrial waste discharge			

PRIMARY STANDARDS	(Continued
-------------------	------------

Parameter	State MCL [MRDL]	PHG (MCLG) [MRDLG]	State DLR (RL)	Range Average	Imported Surface Water Weymouth (MWD)	Imported Surface Water Miramar (TVMWD)	Groundwater Miramar (TVMWD)	Imported Groundwater (CDWC)	Units	Major Sources in Drinking Water
VOLATILE ORGANIC C	ONTAN	INANI	S							
Dibromochloropropane (DBCP)	200	1.7	10	Range					ppt	Banned nematicide that may still be present in soils due to runoff/leaching
				Average	ND	ND	ND	ND ND		Tunon/leaching
Tetrachloroethylene (PCE)	5	0.06	0.5	Range Average	ND	ND	ND	ND – 1.1 0.15	ppb	Discharge from factories, dry cleaners, and auto shops
Taluana	150	150	0.5	Range					nnh	Discharge from netroloum and shaminal refineries
Toluene	. 150	150	0.5	Average	ND	ND	ND	ND	ppb	Discharge from petroleum and chemical refineries
Trichloroethylene (TCE)	5	1.7	0.5	Range				ND – 1.3	ppb	Discharge from metal degreasing sites and other factories
, , ,	Ů		0.0	Average	ND	ND	ND	0.72	pps	Distributed to the state of the
RADIOLOGICALS						ı				
Gross Beta Particle Activity (h)	50	(0)	4	Range	4 – 7				pCi/L	Decay of natural and man-made deposits
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(-7		Average	6	5.82	NR	NC		,
Combined Radium	5	(0)	NA	Range	ND	D 0000	.148 (2016)	2 – 3.2	pCi/L	Erosion of natural deposits
				Average	ND – 1	Due 2023	Due 2028	2.7		
Radium 226	NA	0.05	1	Range Average	ND – 1	Due 2023	.147 (2016) Due 2028	NC	pCi/L	Erosion of natural deposits
D. di 200	NIA	0.040	4	Range			.001 (2016)	-	- O://	Erosion of natural deposits
Radium 228	NA	0.019	'	Average	ND	Due 2023	Due 2028	NC	pCi/L	
Strontium-90	8	0.35	2	Range					pCi/L	Decay of natural and man-made deposits
				Average	ND	0.330	NR	NC	-	· ·
Tritium	20,000	400	1,000	Range	ND	170	NR	NC	pCi/L	Decay of natural and man-made deposits
				Average Range	1-3	170	INIX	NO		
Uranium	20	0.43	1	Average	2	Due 2023		ND	pCi/L	Erosion of natural deposits
DISINFECTION BY-PRO	DUCT:	S, DISIN	IFECTA	NT RESI	DUALS, AND DISI	NFECTION BY-PRO	DDUCTS PREC	CURSORS (k)		
				Range	ND – 7.6					
Bromate (h)	10	0.1	1.0	Average	ND	NR	NR	NC	ppb	By-product of drinking water ozonation
Total Trihalomethanes (TTHM)	80	NA	1	Range Average	R	WD Distribution System-V RWD Distribution System	/ide - 1.4 - 63.3 I-Wide - 29.88		ppb	By-product of drinking water disinfection
Haloacetic Acids (HAA5)	60	NA	1	Average Highest	R	RWD Distribution System-NRWD Distribution System	Vide - 0.0 - 12.4 n-Wide - 7.46		ppb	By-product of drinking water disinfection
Total Chlorine Residual	[4]	[4]	NA	Range Average	RWD Distribution System-Wide - 2.43 - 2.78 RWD Distribution System-Wide - 2.65			ppm	Drinking water disinfectant added for treatment	
Total Organic Carbon (TOC)	TT	NA	0.30	Range	1.7 – 2.6	1.0 – 1.32			- ppm	Various natural and man-made sources; TOC as a medium for the
Iotal Organic Carbon (TOC)	ΙΤ	NA	0.30	Average	2.4	1.35	NR	NC	Ph	formation of disinfection by-products.

SECONDARY STANDARDS - AESTHETIC STANDARDS

Parameter	State MCL	PHG (MCLG)	State DLR	Range Average	Imported Surface Water Weymouth (MWD)	Imported Surface Water Miramar (TVMWD)	Groundwater Miramar (TVMWD)	Imported Groundwater (CDWC)	Units	Major Sources in Drinking Water
Aluminum (d) (p)	200	600	50	Range Average	58 – 240 156	ND	NR	ND	ppb	Residue from water treatment processes; erosion of natural deposits
Chloride	500	NA	(2)	Range Average	98 – 105 102	ND	NR	22 – 25 23.5	ppm	Runoff / leaching from natural deposits; seawater influence
Color	15	NA	(1)	Range Average	1	ND	NR	ND	Units	Naturally occurring organic materials
Copper (d) (f)	1	0.3	0.05		RWD Distribution System-Wide — 36 Samples Collected RWD Distribution System-Wide — 90th Percentile Level = 0.120 RWD Distribution System-Wide — Samples Exceeding Action Level = 0					Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
Foaming Agents-MBAS	500	NA	(50)	Range Average	ND	ND – .28 0.14	NR	ND	ppb	Municipal and industrial waste discharges
Iron	300	NA	100	Range Average	ND	ND	NR	ND	ppb	Leaching from natural deposits: industrial wastes
Odor Threshold (i)	3	NA	1	Range Average	3	1	NR	1	TON	Naturally occurring organic materials
Specific Conductance	1,600	NA	NA	Range Average	964 – 1,020 992	480	NR	500 – 520 510	μS/cm	Substances that form ions when in water; seawater influence
Sulfate	500	NA	0.5	Range Average	212 – 232 222	50	NR	42 – 46 44	ppm	Runoff / leaching from natural deposits; industrial wastes
Total Dissolved Solids (TDS) (n)	1,000	NA	(2)	Range Average	632 – 643 638	260	NR	290 – 310 300	ppm	Runoff / leaching from natural deposits; seawater influence

OTHER PARAMETERS

GENERAL MINERALS

All aliate.	NIA	NIA	(4)	Range	126 – 128	76 – 86		160 – 190		Manager of contracting the
Alkalinity	NA	NA	(1)	Average	127	83.25	NR	175	ppm	Measure of water quality
Disarbaneta (LICO2)	NA	NA	NA	Range				200 – 230	/I	Naturally occurring from organic materials
Bicarbonate (HCO3)	INA	INA	INA	Average	NC	NC	NC	215	mg/L	ivalurally occurring from organic materials
Calcium	NA	NA	(0.1)	Range	68 – 71	23 – 25		67 – 70	ppm	Measure of water quality
Calcium		IVA	(0.1)	Average	70	24	NR	69	ppiii	ivicasure or water quality
Magnesium	NA	NA	(0.01)	Range	25 – 26			12 – 13	ppm	Measure of water quality
		IVA	(0.01)	Average	26	4.9	NR	12.5	ppiii	ivicasure or water quality
Perfluooroctanesulfonic acid	NL =	NA	NA	Range				2.1 – 8.2	ppt	Discharge from manufacturing facilities
(PFOS)	6.5	IVA	INA	Average	NC	NC	NC	4.2	ppt	Discharge from manufacturing facilities
Perfluorooctanoic acid	NL =	NA	NA	Range				ND – 3.1	ppt	Discharge from manufacturing facilities
(PFOA) (ppt)	5.1	IVA	14/-1	Average	NC	NC	NC	1.7	ppt	Districting tronslated in the state of the s
Potassium	NA	NA	(0.2)	Range	4.5 – 4.8			3.3 – 3.6	ppm	Measure of water quality
		IVA	(0.2)	Average	4.6	1.9	NR	3.5	ppiii	incusure of water quality
Sodium	NA	NA	(1)	Range	98 – 103			17	ppm	Measure of water quality
	. 14/1	IVA	(1)	Average	100	61	NR	17	ppiii	incusure of water quality
Total Hardness (as CaCO3)	NA	NA	(1)	Range	277 – 281			220	ppm	Measure of water quality
Total Hardriess (as Gaoos)	. 14/1	IVA	(1)	Average	279	82	NR	220	ppiii	incusure of water quality
Total Anions	NA	NA	NA	Range				4.96 – 5.28	ppm	Negatively Charged Ions
Total 7 tillollo		17/7	10/1	Average	NR	NR	NR	5.12	ppiii	regulively offarged forto
Total Cations	NA	NA	NA	Range				5.24 – 5.32	ppm	Positively Charged Ions
		IVA	14/-1	Average	NR	NR	NR	5.28	ppiii	1 courtery criticized forto
Total Hardness	NA	NA	NA	Range					gpg	Measure of water quality
(Grains per Gallon)	14/1	IVA	NA	Average	16.32	4.8	NR	12.87	929	modelio oi matoi quanty

9

					Imported	Imported	Groundwater	Imported			
Parameter	State MCL	PHG (MCLG)	State DLR	Range Average	Surface Water Weymouth (MWD)	Surface Water Miramar (TVMWD)	Miramar (TVMWD)	Groundwater (CDWC)	Units	Major Sources in Drinking Water	
JNREGULATED CONTA	MINAN	ΓS									
Boron	NL = 1000	NA	100	Range Average	140	180	Due 2023	ND	ppb	Runoff / leaching from natural deposits; industrial wastes	
Chlorate	NL = 800	NA	20	Range Average	88	ND	NR	NC	ppb	By-product of drinking water chlorination; industrial processes	
Chromium VI	NA	0.02	1	Range Average	ND	ND	Due 2023	2.8 – 3.0 2.9	ppb	Runoff / leaching from natural deposits; discharge from industrial waste factories	
I-Nitrosodimethylamine (NDMA)	NL = 10	3	(2)	Range Average	NC	NC	NC	ND	ppt	By-product of drinking water chlorination; industrial processes	
MISCELLANEOUS				, o. ago				2			
calcium Carbonate Precipitation otential (CCPP) (I)	NA	NA	NA	Range Average	5.7 – 11 9.4	NR	NR	NC	ppm	Elemental balance in water; affected by temperature, other factors	
orrosivity Aggressiveness Index)(g)	NA	NA	NA	Range Average	12.5	12.21	NR	12.32 – 12.38 12.35	- Al	Elemental balance in water; affected by temperature, other factors	
orrosivity (j) as Saturation Index)	NA	NA	N/A	Range Average	0.56 - 0.75 0.66	0.40	NR	NC NC	- SI	Elemental balance in water; affected by temperature, other factors	
1	NA	NA	N/A	Range				7.8 – 7.9	pH units	Measure of water quality	
		INA INA		Average	8.1	8.5	NR	7.85		1. 7	

Abr

DEFINITION OF TERMS

Al		Aggressiveness Index	LRAA	Locational Running Annual Average	ND	Not Detected at or above DLR or RL	Range	Lowest to highest sampling results
AL Ave	erage	Action Level Average value of all	MCL	Maximum Contaminant Level	NL	Notification Level to SWRCB	RL	Reporting Limit
	J	samples collected	MCLG	Maximum Contaminant Level Goal	NTU	Nephelometric Turbidity	SI	Saturation Index (Langelier)
Cal	CO3	Calcium Carbonate Calcium Carbonate	MFL	Million Fibers per Liter	pCi/L	Units PicoCuries per Liter	SWRCB	State Water Resources Control Board
	FF	Precipitation Potential	MRDL	Maximum Residual Disinfectant Level	PHG	Public Health Goal	TDS	Total Dissolved Solids
CD	WC	California Domestic Water Company	MRDLG	Maximum Residual	ppb	Parts per billion or micrograms per liter (µg/L)	TON	Threshold Odor Number
CFI	E	Combined Filter Effluent	BANA/D	Disinfectant Level Goal	ppm	Parts per million or milligrams per liter (mg/L)	π	Treatment Technique is a required process
CFI	U	Colony-Forming Units	MWD	Metropolitan Water District of Southern California	ppq	Parts per quadrillion or		intended to reduce the level of a contaminate in
DLI	R	Detection Limits for Purposes of Reporting	NA	Not Applicable	nnt	picograms per liter (pg/L) parts per trillion or	ттнм	drinking water Total Trihalomethanes
НА	A5	Sum of five haloacetic acids	NC	Not Collected	ppt	nanograms per liter (ng/L)	TVMWD	Three Valleys Municipal
HP	C	Heterotrophic Plate Count	NR	Not Required	RAA	Running Annual Average		Water District

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency.

Public Health Goal (PHG):

Runoff / leaching from natural deposits; seawater influence

The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Primary Drinking Water Standard (PDWS): MCLs, MRDLs and treatment

techniques (TTs) for contaminants that affect health, along with their monitoring and reporting requirements.

Maximum Residual Disinfectant Level (MRDL):

The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual
Disinfectant Level Goal
(MRDLG): The level of a
drinking water disinfectant
below which there is no
known or expected risk
to health. MRDLGs do not
reflect the benefits of the use
of disinfectants to control

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

microbial contaminants.

Treatment Technique (TT):
A required process intended to reduce the level of a contaminant in drinking water.

Running Annual Average (RAA): Highest RAA is the highest of all Running Annual Averages calculated as an average of all within a 12-month period.

Average (LRAA): highest LRAA is the highest of all Locational Running Annual Averages calculated as an average of all samples collected within a 12-month period.

HIGHLIGHTS

- (a) Metropolitan and Three Valleys MWD monitor turbidity at the CFE locations using continuous and grab samples. Turbidity, a measure of cloudiness of the water, is an indicator of treatment performance. Turbidity was in compliance with the TT primary drinking water standard and the secondary drinking water standard of less than 5 NTU.
- **(b)** Results are based on Rowland Water District's distribution system's highest monthly percent positives; 936 samples were analyzed in 2022. The highest monthly percentage was 1.3%. Total coliform MCLs: No more than 5.0% of the monthly samples may be total coliform positive.
- (c) The MCL for E. coli is based on routine and repeat samples that are total coliform-positive, and either is E. coli-positive or the system fails to take repeat samples following an E. coli-positive routine sample, or the system fails to analyze a total coliform-positive repeat sample for E. coli. The MCL was not violated.
- (d) Aluminum and Copper have both primary and secondary standards.
- (e) All distribution system samples had detectable total chlorine residuals, so no HPC was required. Metropolitan and Three Valleys MWD monitor HPCs to ensure treatment process efficacy.
- (f) Lead and Copper samples are required to be collected once every three years during the months of June September. Sample results are from 2021.
- (g) Al ≥ 12.0 = Non-aggressive water; Al 10.0-11.9 = Moderately aggressive water; Al ≤ 10.0 = Highly aggressive water. Reference: ANSI/AWWA Standard C400-93 (R98)
- (h) Compliance with the state and federal bromate MCL is based on RAA.
- (i) Compliance with odor threshold secondary MCL is based on RAA. Treatment plants begin quarterly monitoring if annual monitoring results are above 3.
- (j) Positive SI = non-corrosive; tendency to precipitate and/or dissolve scale on pipes. Negative SI = corrosive; tendency to dissolve calcium carbonate. Reference: Standard Methods (SM2330)
- (k) RWD was in compliance with all provisions of the Stage 2 Disinfectants and Disinfection By-Products Rule (D/DBPR). Compliance was based on the highest Locational Running Annual Average (LRAA) of all data collected at distribution system-wide monitoring locations.
- (I) Positive CCPP = non corrosive; tendency to precipitate and/or deposit scales on pipe. Negative CCPP = corrosive; tendency to dissolve calcium carbonate. Reference: Standard Methods (SM 2330)
- (m) Metropolitan was in compliance with all provisions of the State's fluoridation system requirements. TVWD does not have fluoride feed systems and all fluoride results are naturally occurring.
- (n) Metropolitan's TDS compliance data are based on flow-weighted monthly composite samples collected twice per year (April and October). The 12-month statistical summary of flow-weighted data is reported in "Other Parameters". TVMVD is required to test once annually for TDS.
- (o) Statistical summary represents 12 months of flow-weighted data and values may be different than the TDS reported to meet compliance with secondary drinking water regulations for Metropolitan. Metropolitan's and TVMWD's TDS goal is < 500 mg/L.
- **(p)** Compliance with the State MCL for aluminum is based on RAA. No secondary standard MCL exceedance occurred at the Metropolitan or TVMWD plant effluents.
- (q) Data are from voluntary monitoring of constituents and are provided for informational purposes.

10

2023 ANNUAL

Water Quality RECOURT

We are devoted to caring for our neighbors and our future.

This report contains important information about your drinking water. Translate it or speak with someone who understands it.

Este informe contiene información muy importante sobre su aqua de beber. Tradúzcalo ó hable con alquien que lo entienda bien.

此報告中包含有關您的飲 用水的重要資訊。您可請求翻譯或與能夠讀懂此報 告的人交談。

해당 보고서에는 식수에 대한 중요한 정보가 포함되어 있습니다. 내용을 이해하는 사람이

Naglalaman ang ulat na ito ng mahalagang impormasyon tungkol sa iyong inuming tubig. Isalin ito o makipag-usap sa isang taona nakauunawa rito.

Báo cáo này có các thông tin quan trọng về nước uống của quý vị. Hãy biên dịch báo cáo hoặc thảo luận với người hiểu được báo cáo.

C

PRIMARY STANDARDS

2023 SAMPLE RESULTS

For specific questions regarding this report or any additional questions related to District drinking water, please contact Elisabeth Mendez, Compliance & Safety Manager, at (562) 697-1726 or email info@rwd.org

Unless otherwise noted, the data presented in this table is from testing completed January 1 - December 31, 2023. The state requires the District to monitor for certain contaminants less than once per year because the concentrations are not expected to vary significantly from year to year. Some of the data, though representative of the water quality, is more than one year old. Unregulated contaminant monitoring helps EPA and the DDW determine where certain contaminants occur and whether they need to be regulated.

Visit www.rwd.org/2023waterquality to learn more.

PRIMARY STANDA	4KD2									
Parameter	State MCL [MRDL]	PHG (MCLG) [MRDLG]	State DLR (RL)	Range Average	Imported Surface Water Weymouth (MWD)	Imported Surface Water Miramar (TVMWD)	Groundwater Miramar (TVMWD)	Imported Groundwater (CDWC)	Units	Major Sources in Drinking Water
CLARITY										
Combined Filter Effluent (CFE)	TT	NA	NA	Highest	0.06				NTU	Soil Runoff
Turbidity (a)				% <0.3	100%	100%	100%	ND	%	Our Runon
MICROBIOLOGICAL										
Total Coliform Bacteria (b) (Total Coliform Rule)	5%	(0)	NA		RWD Distribution System-Wide 0%					Naturally present in the environment
Fecal Coliform and E.coli (c) (Total Coliform Rule)	(c)	(0)	NA		R	WD Distribution System-W	/ide - 0%		(c)	Human and animal fecal waste
Heterotrophic Plate Count (e)	TT	NA	(1)	Range Average	ND	ND	ND	NC	CFU/mL	Naturally present in the environm
INORGANIC CHEMICALS				Avelage	ND	ND	NB	NO		
INORGANIC CHEMICALS				Range	ND - 71					
Aluminum (d) (p)	200	600	50	Average	Highest RAA 115	ND	NR	ND	ppb	Residue from water treatment proc erosion of natural deposits
				Range	riigilostreetiio	2.0 - 3.1	NIX	ND	_	Erosion of natural deposits: glas
Arsenic	10	.004	2	Average	ND	2.55	ND	ND	ppb	electronics production wastes
Dect. iii	4000	0000	400	Range					1.	Discharge of oil drilling waste an
Barium	1000	2000	100	Average	107	ND	ND	120	ppb	from metal refineries; erosion of natural deposits
Copper (d) (f)	AL = 1.3	0.3	0.05		RWD Distribu	tribution System-Wide 36 ution System-Wide 90th F ı System-Wide Samples E	ercentile Level = .12		ppm	Internal corrosion of household pipes; erosion of natural deposit
				Range	0.6 - 0.8			0.28 - 0.30		Erosion of natural deposits; water
Fluoride (m)	2	1	0.1	Average	0.7	0.18 (naturally occurring)	0.34 (naturally occurring)	0.29	ppm	additive that promotes strong tee
Lead (f)	AL = 15	0.2	5		RWD Distrib	ribution System-Wide – 36 ution System-Wide – 90th System-Wide – Samples I	Samples Collected Percentile Level = NI		ppb	Internal corrosion of household pipes; erosion of natural deposits
Nitrata (aa Ni)	10	10	0.4	Range		0.53 - 0.7	2.4 - 4.8	3.1 - 4.9		Runoff and leaching from fertilize use; septic tank and sewage; ero
Nitrate (as N)	10	10	0.4	Average	0.8	0.64	2.9	3.6	ppm	or natural deposits
Nitroto : Nitrito (ao NI)	1	4	0.4	Range						Runoff and leaching from fertilize
Nitrate + Nitrite (as N)			0.4 Avera		ND	ND	ND	ND	ppm	use; septic tank and sewage; ero or natural deposits
Developmenta (CIOA)	c	4	Range					0.94 - 2.3	nnh	ladustrial wests disabor
Perchlorate (CIO4)	6	Average ND		ND	ND	1.4	ppb	Industrial waste discharge		

PRIMARY STANDARDS (Continued)

Parameter	State MCL [MRDL]	PHG (MCLG) [MRDLG]	State DLR (RL)	Range Average	Imported Surface Water Weymouth (MWD)	Imported Surface Water Miramar (TVMWD)	Groundwater Miramar (TVMWD)	Imported Groundwater (CDWC)	Units	Major Sources in Drinking Water	
OLATILE ORGANIC C	ONTAN	INANI	S								
Dibromochloropropane (DBCP)	200	1.7	10	Range					- ppt	Banned nematicide that may still be present in soils due to	
				Average	ND	ND	ND	NC		runoff/leaching	
Tetrachloroethylene (PCE)	5	0.06	0.5	Range				ND - 0.54	ppb	Discharge from factories, dry cleaners, and auto shops	
				Average	ND	ND	ND	ND	- ''		
oluene	150	150	0.5	Range	ND	ND	ND	115	ppb	Discharge from petroleum and chemical refineries	
				Average	ND	ND	ND	ND 12			
Trichloroethylene (TCE)	5	1.7	0.5	Range	ND	ND	ND	ND - 1.2	ppb	Discharge from metal degreasing sites and other factories	
PADIOLOGICALS				Average	ND	ND	ND	0.77			
RADIOLOGICALS			1		ND 0	l		l			
Gross Beta Particle Activity (h)	50	(0)	4	Range	ND - 6	0.00	ND	NO	pCi/L	Decay of natural and man-made deposits	
				Average	ND	6.86	NR	NC ND	_		
Combined Radium	5	(0)	NA	Range	ND	2.58	.148 (2016) Due 2028	ND ND	pCi/L	Erosion of natural deposits	
				Average Range	ND	2.30	.147 (2016)	ND			
Radium 226	NA	0.05	1	Average	ND	ND	Due 2028	NC	pCi/L	Erosion of natural deposits	
				Range	ND	110	.001 (2016)	110	_		
Radium 228	NA	0.019	1	Average	ND	2.01	Due 2028	NC	pCi/L	Erosion of natural deposits	
				Range				-			
Strontium-90	8	0.35	2	Average	ND	ND	NR	NC	- pCi/L	Decay of natural and man-made deposits	
		400	4 000	Range					0.0		
Fritium	20,000	400	1,000	Average	ND	ND	NR	NC	pCi/L	Decay of natural and man-made deposits	
Land on	00	0.40	,	Range	ND - 3		1.4 - 2.1	2.0 - 3.2	. 0://	E	
Jranium	20	0.43	1	Average	ND	ND	1.92	2.7	pCi/L	Erosion of natural deposits	
DISINFECTION BY-PRO	DUCT!	S, DISIN	IFECTA	NT RESI	DUALS, AND DISI	NFECTION BY-PRO	ODUCTS PREC	CURSORS (k)			
				Range	ND - 12						
Bromate (h)	10	0.1	1.0	Average	Highest RAA 2.4	NR	NR	NC	ppb	Byproduct of drinking water ozonation	
Total Trihalomethanes (TTHM)	80	NA	1	Range Average		RWD Distribution System-NRWD Distribution System	Nide – 1.0 - 35.7		ppb	Byproduct of drinking water disinfection	
Haloacetic Acids (HAA5)	60	NA	1	Average Highest	RWD Distribution System-Wide – 1.2 - 25.2 RWD Distribution System-Wide – 11.37				ppb	Byproduct of drinking water disinfection	
Total Chlorine Residual	[4]	[4]	NA	Range Average	RWD Distribution System-Wide - 2.37 - 2.78 RWD Distribution System-Wide - 2.62 ppm					Drinking water disinfectant added for treatment	
Fotal Organic Carbon (TOC)	TT	NA	0.30	Range	1.8 - 3.0	0.76 - 1.02			ppm	Various natural and man-made sources; TOC as a medium for	

SECONDARY STANDARDS - AESTHETIC STANDARDS

State MCL	PHG (MCLG)	State DLR	Range Average	Imported Surface Water Weymouth (MWD)	Imported Surface Water Miramar (TVMWD)	Groundwater Miramar (TVMWD)	Imported Groundwater (CDWC)	Units	Major Sources in Drinking Water
200	600	50	Range	ND - 71				ppb	Residue from water treatment processes; erosion of natural deposits
					ND	ND	ND		
500	NA	(2)						mag	Runoff / leaching from natural deposits; seawater influence
		(-/		44	58	28	20	PP	,
15	ΝΔ	(1)	Range					Unite	Naturally occurring organic materials
13	INA	(1)	Average	1	ND	ND	ND	Office	Tradaily occurring organic materials
1	0.3	0.05							Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
F00	NIA	(50)	Range						Manufactural and to disability works altered account
500	NA	(50)	Average	ND	ND	ND	ND	ppp	Municipal and industrial waste discharges
200	NIA	400	Range						
300	NA	100	Average	ND	ND	ND	ND	ppp	Leaching from natural deposits: industrial wastes
			Range				1	T 011	
3	NA	1		2	1	1	1	ION	Naturally occurring organic materials
4 000				357 - 507	270 - 430		480 - 500	0.1	
1,600	NA	NA		432	350	600	490	µS/cm	Substances that form ions when in water; seawater influence
				51 - 72			40 - 41		
500	NA	0.5		62	41	39	40.5	ppm	Runoff / leaching from natural deposits; industrial wastes
		(-)		·		280 - 350			
1,000	NA	(2)			100	315		ppm	Runoff / leaching from natural deposits; seawater influence
	MCL	MCL (MCLG) 200 600 500 NA 15 NA 1 0.3 500 NA 300 NA 3 NA 1,600 NA 500 NA	MCL (MCLG) DLR 200 600 50 500 NA (2) 15 NA (1) 1 0.3 0.05 500 NA (50) 300 NA 100 3 NA 1 1,600 NA NA 500 NA 0.5	MCL (MCLG) DLR Average 200 600 50 Range Average 500 NA (2) Range Average 15 NA (1) Range Average 1 0.3 0.05 500 NA (50) Range Average 300 NA 100 Range Average Average Average Average 1,600 NA NA Range Average 500 NA 0.5 Range Average Average Range Average Range Average	State MCL MCLG State Average Average Surface Water Weymouth (MWD)	State MCL MCLG DLR Average Average	State MCLG MCLG MCLG MCLG Mange Average Average Average MIramar (TVMWD) MIramar (TVMWD)	State MCL MCLG DLR Average Average Average Surface Water Weymouth (MWD) Miramar (TVMWD) Miramar (TVMWD) Groundwater (CDWC)	State MCL MCLG MCLG DLR Average Average Surface Water Weymouth (MWD) Miramar (TVMWD) Miramar (TVMWD) Groundwater (CDWC) Units

OTHER PARAMETERS

GENERAL MINERALS											
Alkalinity	NA	NA	(1)	Range	65 - 78	59 - 71	170 - 220		nnm	Measure of water quality	
Aikaiiiity		INA	(1)	Average	72	66	195	170	ppm	ivieasure or water quality	
Bicarbonate (HCO3)	NA	NA	NA	Range				200 - 210	ma/l	Naturally occurring from organic materials	
bicarbonate (FICO3)	IVA	INA	IVA	Average	NC	NC	NC	205	mg/L	Naturally occurring from organic materials	
Calcium	NA	NA	(0.1)	Range	20 - 28	17 - 32	57 - 89	65 - 70	nnm	Measure of water quality	
Calcium	INA	INA	(0.1)	Average	24	24.5	73	67.5	ppm	ivieasure or water quality	
Magnagium	NA	NA	(0.01)	Range	7.8 - 13		9.4 - 16	12 – 13	nnm	Measure of water quality	
Magnesium	INA	INA	(0.01)	Average	10	4.5	12.7	12.5	ppm	ivieasure or water quality	
Perfluooroctanesulfonic acid	NL =	NA	NA	Range				ND - 2.4	nn4	Discharge from manufacturing facilities	
(PFOS)	6.5	NA	INA	Average	ND	ND	ND	1.5	ppt	Discharge from manufacturing facilities	
Perfluorooctanoic acid	NL =	NA	NIA	Range						Discharge from manufacturing facilities	
(PFOA) (ppt)	5.1	INA	NA	Average	ND	ND	ND	ND	ppt	Discharge from manufacturing facilities	
Potassium	NA	NA	(0.2)	Range	2.6 - 30		1.5 - 2.1	3.4 – 3.6		Macaura of water quality	
Fotassium	INA	INA	(0.2)	Average	2.8	1.9	1.8	3.5	ppm	Measure of water quality	
Codium	NA	NA	(1)	Range	39 - 55		21 - 25	15 - 17		Macaura of water quality	
Sodium	INA	INA	(1)	Average	47	56	23	16	ppm	Measure of water quality	
Total Hardness (as CoCO3)	NA	NA	(1)	Range	81 - 122		180 - 290	210 - 230		Macaura of water quality	
Total Hardness (as CaCO3)	INA	INA	(1)	Average	102	74	235	220	ppm	Measure of water quality	
Total Anions	NA	NA	NA	Range				4.71 - 4.85		Na antibale Observed Inc.	
Total Amons	INA	INA	INA	Average	NR	NR	NR	4.78	ppm	Negatively Charged Ions	
Total Cations	NΙΔ	NIA	NIA	Range				4.98 - 5.40		Desitively Charged lane	
Total Cations	NA NA	NA	A NA	Average	NR	NR	NR	5.19	ppm	Positively Charged Ions	
Total Hardness	NIA.	NIA	NA NA	Range					~~~	Managers of water quality	
(Grains per Gallon)	NA	NA	NA	Average	5 96	4.33	13 74	12 87	gpg	Measure of water quality	

OTHER PAR	AMET	ERS (Con	tinued,)					
Parameter	State MCL	PHG (MCLG)	State DLR	Range Average	Imported Surface Water Weymouth (MWD)	Imported Surface Water Miramar (TVMWD)	Groundwater Miramar (TVMWD)	Imported Groundwater (CDWC)	Units	Major Sources in Drinking Water
UNREGULATED CONTA	MINAN	rs								
Boron	NL = 1000	NA	100	Range Average	140	100	150 - 170 160	ND - 110 55	ppb	Runoff / leaching from natural deposits; industrial wastes
Chlorate	NL = 800	NA	20	Range Average	19	ND	ND	NC	ppb	By-product of drinking water chlorination; industrial processes
Chromium VI	NA	0.02	1	Range Average	ND	ND	ND	2.8 - 3.0 2.7	ppb	Runoff / leaching from natural deposits; discharge from industrial waste factories
N-Nitrosodimethylamine (NDMA)	NL = 10	3	(2)	Range Average	ND - 5.3 2.2	ND	NR	ND	ppt	By-product of drinking water chlorination; industrial processes
MISCELLANEOUS										
Calcium Carbonate Precipitation Potential (CCPP) (I)	NA	NA	NA	Range Average	1.3 - 9.4 4.2	NR	NR	NC	ppm	Elemental balance in water; affected by temperature, other factors
Corrosivity Aggressiveness Index)(g)	NA	NA	NA	Range Average	12.1 - 12.4 12.2	11.86	12.53	12.32 - 12.43 12.38	- Al	Elemental balance in water; affected by temperature, other factors
Corrosivity (j) as Saturation Index)	NA	NA	N/A	Range Average	0.21 - 0.58 0.39	0.01	0.69	NC	- SI	Elemental balance in water; affected by temperature, other factors
DH ,	NA	NA	N/A	Range Average	8.6	8.2 - 8.8 8.6	7.9	7.9 - 8.0 7.95	pH units	Measure of water quality
Total Dissolved Solids (TDS) (o)	1,000	NA	(2)	Range Average	210 - 641 357	130	350	NC	ppm	Runoff / leaching from natural deposits; seawater influence

				NC	Not Collected	RAA	Running Annual Average
Abr	DEFINITIO	N O	FTERMS	NR	Not Required	Range	Lowest to highest sampling results
				ND	Not Detected at or above DLR or RL	RL	Reporting Limit
Al	Aggressiveness Index	HPC	Heterotrophic Plate Count	NL	Notification Level to SWRCB	SI	Saturation Index (Langelier)
AL Average	Action Level Average value of all	LRAA	Locational Running Annual Average	NTU	Nephelometric Turbidity Units	SWRCB	State Water Resources
	samples collected	MCL	Maximum Contaminant Level	pCi/L	PicoCuries per Liter	TDS	Control Board Total Dissolved Solids
CaCO3	Calcium Carbonate	MCLG	Maximum Contaminant Level Goal	PHG	Public Health Goal	TON	Threshold Odor Number
ССРР	Calcium Carbonate Precipitation Potential	MFL	Million Fibers per Liter	ppb	Parts per billion or micrograms per liter (µg/L)	TT	Treatment Technique is a required
CFE	Combined Filter Effluent	MRDL	Maximum Residual Disinfectant Level	ppm	Parts per million or milligrams per liter (mg/L)		process intended to reduce the level of a contaminate in drinking water
CFU	Colony-Forming Units	MDDIC		nna	Parts per quadrillion or picograms		
DLR	Detection Limits for Purposes	MRDLG	Maximum Residual Disinfectant Level Goal	ppq	per liter (pg/L)	ТТНМ	Total Trihalomethanes
HAA5	of Reporting Sum of five haloacetic acids	NA	Not Applicable	ppt	parts per trillion or nanograms per liter (ng/L)		

- (a) Metropolitan and Three Valleys MWD monitors turbidity at the CFE locations using continuous and grab samples. Turbidity, a measure of cloudiness of the water, is an indicator of treatment performance. Turbidity was in compliance with the TT primary drinking water standard and the secondary drinking water standard of less than 5 NTU.
- **(b)** Results are based on Rowland Water District's distribution system's highest monthly percent positives. 937 samples were analyzed in 2023. The highest monthly percentage was 0%. Total coliform MCLs: No more than 5.0% of the monthly samples may be total coliform positive.
- (c) The MCL for E. coli is based on routine and repeat samples that are total coliform-positive, and either is E. coli-positive or the system fails to take repeat samples following an E. coli-positive routine sample, or the system fails to analyze a total coliform-positive repeat sample for E. coli. The MCL was not violated.
- (d) Aluminum and Copper have both primary and secondary standards.
- (e) All distribution system samples had detectable total chlorine residuals, so no HPC was required. Metropolitan and Three Valleys MWD monitors HPCs to ensure treatment process efficacy.
- **(f)** Lead and Copper samples are required to be collected once every three years during the months of June September. Sample results are from 2021.
- (g) Al ≥ 12.0 = Non-aggressive water; Al 10.0-11.9 = Moderately aggressive water; Al ≤ 10.0 = Highly aggressive water. Reference: ANSI/AWWA Standard C400-93 (R98)
- (h) Compliance with the state and federal bromate MCL is based on RAA.
- (i) Compliance with odor threshold secondary MCL is based on RAA. Treatment plants begin quarterly monitoring if annual monitoring results are above 3.

- (j) Positive SI = non-corrosive; tendency to precipitate and/or dissolve scale on pipes. Negative SI = corrosive; tendency to dissolve calcium carbonate. Reference: Standard Methods (SM2330)
- (k) RWD was in compliance with all provisions of the Stage 2 Disinfectants and Disinfection By-Products Rule (D/DBPR). Compliance was based on the highest Locational Running Annual Average (LRAA) of all data collected at distribution system-wide monitoring locations.
- (I) Positive CCPP = non corrosive; tendency to precipitate and/or deposit scales on pipe. Negative CCPP = corrosive; tendency to dissolve calcium carbonate. Reference: Standard Methods (SM 2330)
- (m) Metropolitan was in compliance with all provisions of the State's fluoridation system requirements. TVWD does not have fluoride feed systems and all fluoride results are naturally occurring.
- (n) Metropolitan's TDS compliance data are based on flow-weighted monthly composite samples collected twice per year (April and October). The 12-month statistical summary of flow-weighted data is reported in "Other Parameters". TVMVD is required to test once annually for TDS.
- (o) Statistical summary represents 12 months of flow-weighted data and values may be different than the TDS reported to meet compliance with secondary drinking water regulations for Metropolitan. Metropolitans and TVMWD TDS goal is < 500 mg/L.
- (p) Compliance with the State MCL for aluminum is based on RAA. No secondary standard MCL exceedance occurred at the Metropolitan or TVMWD plant effluents.
- (q) Data are from voluntary monitoring of constituents and are provided for informational purposes.

WATER OUAL QUALITY REPORT

This report contains important information about your drinking water. Translate it or speak with someone who understands it.

Este informe contiene información muy importante sobre su agua de beber.
Tradúzcalo ó hable con alguien que lo entienda bien.

此報告中包含有關您的飲 用水的重要資訊。 您可請求翻譯或與能夠讀 懂此報告的人交談。 Naglalaman ang ulat na ito ng mahalagang impormasyon tungkol sa iyong inuming tubig. Isalin ito o makipagusap sa isang taong nakauunawa rito. Báo cáo này có các thông tin quan trọng về nước uống của quý vị. Hãy biên dịch báo cáo hoặc thảo luận với người hiểu được báo cáo.

We are devoted to caring for our neighbors and our future.

2024 SAMPLE RESULTS

Unless otherwise noted, the data presented in this table is from testing completed January 1 – December 31, 2024. The state requires RWD to monitor for certain contaminants less than once per year because the concentrations are not expected to vary significantly from year to year. Some of the data, though representative of the water quality, is more than one year old. Unregulated contaminant monitoring helps EPA and the DDW determine where certain contaminants occur and whether they need to be regulated.

PRIMARY STANDARDS - M	landator	y Health-	Related :	Standar	ds					
Parameter	State MCL [MRDL]	PHG (MCLG) [MRDLG]	State DLR (RL)	Range Average	Imported Surface Water Weymouth (MWD)	Imported Surface Water Miramar (TVMWD)	Ground Water Miramar (TVMWD)	Imported Ground Water (CDWC)	Units	Major Sources in Drinking Water
CLARITY	100	100							2	
Combined Filter Effluent (CFE) Turbidity (a)	U	NA	NA	Highest %<0.3	0.06 100%	0.08 100%	0.09-0.34/0.21 100%	ND	NTU %	Soil Runoff
MICROBIOLOGICAL										
Total Coliform Bacteria (b) (Total Coliform Rule)	TT	(0)	NA			RWD Distribution Syste	em-Wide 0%		%	Naturally present in the environment
Fecal Coliform and E.coli (c) (Total Coliform Rule)	TT.	(0)	NA			RWD Distribution Syste	em-Wide 0%		(c)	Human and animal fecal waste
INORGANIC CHEMICALS										
Aluminum (d) (p)	1000	600	50	Range Average	ND-150 Highest RAA 93	ND	ND	ND	ppb	Residue from water treatment processes; erosion of natural deposits
Barium	1000	2000	100	Range Average	124	ND	ND	140	ppb	Discharge of oil drilling waste and from metal refineries; erosion of natural deposits
Chromium VI	10	0.02	0.1	Range Average	ND	ND	0.4-0.63 0.5	2.6-3.4 3.0	ppb	Runoff / leaching from natural deposits; discharge from industrial wastes
Copper (d) (f)	AL=1.3	0.3	0.05		RV	RWD Distribution System-Wide - 9 ND Distribution System-Wide - 9 Distribution System-Wide - Sam	90th Percentile Level = .147		ppm	Internal corrosion of household pipes; erosion of natural deposits
Fluoride (m)	2	1	0.1	Range Average	0.3-0.8 0.7	0.11 (naturally occurring)	0.1-0.62 0.38 (naturally occurring)	0.31-0.34 0.33	ppm	Erosion of natural deposits; water additive that promotes strong teeth
Lead (f)	AL=15	0.2	5		,	RWD Distribution System-Wide RWD Distribution System-Wide Distribution System-Wide Sam	90th Percentile Level = 0	3	ppb	Internal corrosion of household pipes; erosion of natural deposits
Nitrate (as N)	10	10	0.4	Range Average	ND	ND-0.49 0.23	ND-4.2 1.55	2.6-4.0 3.5	ppm	Runoff and leaching from fertilizer use; septic tank and sewage; erosion of natural deposits
Nitrate + Nitrite (as N)	1	1	0.4	Range Average	ND	ND	ND	4.0-4.7 4.35	ppm	Runoff and leaching from fertilizer use; septic tank and sewage; erosion of natural deposits
Perchlorate (CIO4)	6	1	1	Range Average	ND	ND	ND	0.89-1.8	ppb	Industrial waste discharge
VOLATILE ORGANIC CONTAMINANTS										
Tetrachloroethylene (PCE)	5	0.06	0.5	Range Average	ND	ND	ND	ND-1.10 0.56	ppb	Discharge from factories, dry cleaners, and auto shops
Trichloroethylene (TCE)	5	1.7	0.5	Range Average	ND	ND	ND	ND-2.7 1.5	ppb	Discharge from metal degreasing sites and other factories

For specific questions regarding this report or any additional questions related to District drinking water, please contact Elisabeth Mendez, Compliance & Safety Manager, at (562) 697-1726 or info@rwd.org.

SAMPLE RESULTS CONTINUED

Parameter	State MCL [MRDL]	PHG (MCLG) [MRDLG]	State DLR (RL)	Range Average	Imported Surface Water Weymouth (MWD)	Imported Surface Water Miramar (TVMWD)	Ground Water Miramar (TVMWD)	Imported Ground Water (CDWC)	Units	Major Sources in Drinking Water
RADIOLOGICALS		0	a North	At ST			1			
Gross Alpha Particle Activity	15	(0)	3	Range Average	ND	ND	ND	ND-3.81 1.56	pCi/L	Erosion of natural deposits
Gross Beta Particle Activity	50	(0)	4	Range Average	ND-5 ND	2.29	NR	NR	pCi/L	Decay of natural and man-made deposits
Radium 226	NA	0.05	1	Range Average	ND	ND	0.82 DUE 2028	ND-0.233 0.105	pCi/L	Erosion of natural deposits
Radium 228	NA	0.019	1	Range Average	ND	ND	0.34 DUE 2028	ND-1.02 0.384	pCi/L	Erosion of natural deposits
Uranium	20	0.43	1	Range Average	ND-3 ND	ND	1.6-3.4 2.5	2.2-3.0 2.6	pCi/L	Erosion of natural deposits
DISINFECTION BY-PRODUCTS, DISINFECT	ANT RESIDU	JALS, AND DIS	SINFECTION E	BY-PRODUCT	'S PRECURSORS (k)					
Bromate (h)	10	0.1	1.0	Range Highest	Highest RAA 2.0	NR	NR	NR	ppb	Byproduct of drinking water ozonation
Total Trihalomethanes (TTHM)	80	NA	1	Range Average		RWD Distribution System- RWD Distribution System		Au 200.VO	ppb	By-product of drinking water disinfection
Haloacetic Acids (HAAS)	60	NA	1	Range Average		RWD Distribution System-Wide 2.1 - 30.6 RWD Distribution System-Wide 12.32		ppb	By-product of drinking water disinfection	
Total Chlorine Residual	[4]	[4]	NA	Range Average		RWD Distribution System-Wide 0.95 - 3.61 RWD Distribution System-Wide 2.65		ppm	Drinking water disinfectant added for treatment	
Total Organic Carbon (TOC)	π	NA	0.30	Range Average	Highest RAA 2.4	Highest RAA 1.18	NR	NR	ppm	Various natural and man-made sources; TOC as a medium for the formation of disinfection byproducts.
SECONDARY STANDARDS -	Aesthet	tic Standa	ards							
Aluminum (d) (p)	200	600	50	Range Average	ND-150 93	ND	ND	ND	ppb	Residue from water treatment processes; natural deposits erosion
Chloride	500	NA	(2)	Range Average	96-116 106	56	4.9-15 9.3	23-28 25.5	ppm	Runoff / leaching from natural deposits; seawater influence
Color	15	NA	(1)	Range Average	1	ND	ND	ND	Units	Naturally occurring organic materials
Copper (d) (f)	1	0.3	0,05		RW	RWD Distribution System-Wide - 9 D Distribution System-Wide - 9 distribution System-Wide - Sam	Oth Percentile Level = 0.147		ppm	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
Odor Threshold (i)	3	NA	1	Range Average	ND	1	1	1	TON	Naturally occurring organic materials
Specific Conductance	1,600	NA	NA	Range Average	912-1080 996	420	380-450 417	520-560 540	mS/cm	Substances that form ions when in water; seawater influence
Sulfate	500	NA	0.5	Range Average	200-250 225	31	21-28 23	45-50 47.5	ppm	Runoff / leaching from natural deposits; industrial wastes
Total Dissolved Solids (TDS) (n)	1,000	NA:	(2)	Range Average	573-690 632	230	220-280 253	310-360 335	ppm	Runoff / leaching from natural deposits; seawater influence
Turbidity (a)	5	NA	0.1	Range Average	ND	0.044	0.4-0.95 0.58	ND	NTU	Soil Runoff

SAMPLE RESULTS CONTINUED

Parameter	State MCL [MRDL]	PHG (MCLG) [MRDLG]	State DLR (RL)	Range Average	Imported Surface Water Weymouth (MWD)	Imported Surface Water Miramar (TVMWD)	Ground Water Miramar (TVMWD)	Imported Ground Water (CDWC)	Units	Major Sources in Drinking Water
HER PARAMETERS										
luoroalkyl and Polyfluoroalky Subst	ances PFAS	Analyzed by E	PA Methods	553 and 537.	1 (t,u)					
erfluoroctanesulfonic acid (PFOS)	NL=6.5	1	4	Range			ND-3.4	ND-2.6	ppt	Industrial chemical factory discharges: runoff/leaching from landfills: used in fire-retarding foams and various
Tridoroctanesuronic acid (FFO3)	NL-0.3	(#)	177	Average	ND	ND	1.68	0.5	ppc	industrial processes
erfluoroctanoic acid (PFOA)	NL=5.1	.007	4	Range		1000000	ND-4.7		ppt	Industrial chemical factory discharges: runoff/leaching from landfills: used in fire-retarding foams and various
	Distriction of	17007		Average	ND	ND	4.0	ND	8.65	industrial processes
rfluorobutanesulfonic acid (PFBS)	NL=500	NA	3	Range			ND-3.8		ppt	Industrial chemical factory discharges: runoff/leaching from landfills: used in fire-retarding foams and various
X 10		-		Average	ND	ND .	1.43	ND	1000	industrial processes Industrial chemical factory discharges; runoff/leaching from landfills; used in fire-retarding foams and various
rfluorohexanesulfonic acid (PFHxS)	NL=1000	NA	3	Range Average	ND	ND	ND-2.7 1.9	ND	ppt	industrial chemical factory discharges; runoff/leaching from landfills; used in fire-retarding foams and various industrial processes
	2.00	1		Range	NU	ND	ND-3.1	NU		Industrial chemical factory discharges: runoff/leaching from landfills: used in fire-retarding foams and various
rfluoroheptanoic Acid (PFHpA)	NA	NA	2	Average	ND	ND	2.08	NR	ppt	industrial processes
140000000000000000000000000000000000000		***		Range		- (0.50)	3.2-5.7	.039	222	Industrial chemical factory discharges: runoff/leaching from landfills: used in fire-retarding foams and various
erfluorohexanoic Acid (PFHxA)	NA	NA	2	Average	ND	ND	4.65	NR	ppt	industrial processes
rfluoroalkyl and Polyfluoroalky Subst	ances PFAS	Analyzed by E	PA Methods	553 Only (t)				-		
A	CAVA		-	Range	1		ND-3.5		- 224	Industrial chemical factory discharges: runoff/leaching from landfills: used in fire-retarding foams and various
erfluorobutanoic Acid (PFBA)	NA	NA	3	Average	ND	ND	2.4	NR		industrial processes
erfluoropenetanoic Acid (PFPeA)	NA	NA	3	Range			ND-5.5		ppt	Industrial chemical factory discharges: runoff/leaching from landfills: used in fire-retarding foams and various
Court of the first over the first of the first of the first owner.	55,000.5		(4)	Average	ND	ND	3.7	NR	PP	industrial processes
onafluoro-3,6-dioxaheptanoic Acid	NA	NA	20	Range			8		ppt	Industrial chemical factory discharges: runoff/leaching from landfills: used in fire-retarding foams and various
IFDHA)				Average	ND	ND	8	NR	-	industrial processes
eneral Minerals	-		-	Panes	109-127	· · · · · · · · · · · · · · · · · · ·		170-180	_	Two services as
kalinity	NA:	NA	(1)	Range Average	118	78	170	175	ppm	Measure of water quality
carbonate (HCO3)	NA.	NA	NA	Range					mg/L	Naturally occurring from organic materials
toroniare frieday	1,400		TAK.	Average	NR 59-76	NR	NR 59-66	210 69-74		
slcium	NA	NA	(0.1)	Range Average	68	22	62	72	ppm	Measure of water quality
agnesium	NA.	NA	(0.01)	Range	25-29		8.5-9.4	12-14	ppm	Measure of water quality
- Comment				Average Range	26 4.6-5.4	11	9.1	13 3.3-3.7	300	
otassium	NA.	NA	(0.2)	Average	5.0	2.4	1.5-1.9	3.5	ppm	Measure of water quality
odium	NA.	NA	(1)	Range	93-117	1207	9.8-17	17-20	ppm	Measure of water quality
ruini.			147	Average	105 241-303	46	14.2 20-190	18.5 220-240	ppin	mediate of mater quarty
ital Hardness (as CaCO3)	NA.	NA	(1)	Range Average	241-303	99	130	220-240	ppm	Measure of water quality
otal Anions	NA.	NA	NA	Range			1	5.05-5.29	meq/L	Negatively Charged Ions
Mar Childria	-		11.0	Average	NR	NR	NR	5.17	mey/L	tregatives, enables (2012)
otal Cations	NA	NA	NA	Range	NR	NR	NR	5.26-5.82 5.54	men/l	Positively Charged Ions

SAMPLE RESULTS CONTINUED

0	1	23/10	V	*						0	
Parameter	State MCL [MRDL]	PHG (MCLG) [MRDLG]	State DLR (RL)	Range Average	Imported Surface Water Weymouth (MWD)	Imported Surface Water Miramar (TVMWD)	Ground Water Miramar (TVMWD)	Imported Ground Water (CDWC)	Units	Major Sources in Drinking Water	
Unregulated Contaminants											
Boron	NL=1,000	NA	100	Range Average	140	140	ND	ND	ppb	Runoff / leaching from natural deposits; industrial wastes	
Chlorate	NL=800	NA	(10)	Range Average	80	56	ND	NR	ppb	By-product of drinking water chlorination; industrial processes	
Lithium	NA	NA	(10)	Range Average	32-47 40	NR	ND	NR	ppb	and pharmaceuticals	
Vanadium	NL=50	NA	3	Range Average	ND	ND	3.4-3.9 3.65	ND	ppb	Naturally occuring; industrial waste discharge	
Miscellaneous (q)											
Calcium Carbonate Precipitation Potential (CCPP) (I)	NA	NA	NA	Range Average	5.5-11 8.4	NR	NR	NR	ppm	Measures of the balance between pH and calcium carbonate saturation in the water	
Corrosivity (Aggressiveness Index)(g)	NA	NA	NA	Range Average	12.4-12.6 12.5	12.3	NR -	12.1-12.35	Al	Measures of the balance between pH and calcium carbonate saturation in the water	
Corrosivity (j) as Saturation Index)	NA	NA	NA	Range Average	0.60-0.65 0.62	244	NR.	NR NR	SI	Measures of the balance between pH and calcium carbonate saturation in the water	
рН	NA NA	NA	NA	Range Average	8.2	7.9-8.6 8.25	NR NR	7.6-7.8	pH units	Measure of water quality	
Total Dissolved Solids (TDS) (o)	1,000	NA	NA	Range Average	506-680	230-270	220-280	310-360	ppm	Runoff / leaching from natural deposits	
	1 1	V500					- 0 7				

DEFINITION OF TERMS

SWRCB State Water Resources Control Board

Not Collected

	Aggressivenessindex		Not Collected
AL	Action Level	NR	Not Required
Average	Result based on arithmetic mean	ND	Not Detected at or above DLR or RL
CaCO3	Calcium Carbonate	NL	Notification Level to SWRCB
CCPP	Calcium Carbonate Precipitation Potential	NTU	Nephelometric Turbidity Units
CFE	Combined Filter Effluent	pCi/L	picoCuries per Liter
CFU	Colony-Forming Units	PHG	Public Health Goal
DLR	Detection Limits for Purposes of Reporting	ppb	Parts per billion or micrograms per liter (µg/L)
HAA5	Sum of five haloacetic acids	ppm	Parts per million or milligrams per liter (mg/L)
HPC	Heterotrophic Plate Count	ppq	Parts per quadrillion or picograms per liter (pg/L)
LRAA	Locational Running Annual Average	RAA	Running Annual Average
MCL	Maximum Contaminant Level	Range	Results based on minimum and maximum values;
MCLG	Maximum Contaminant Level Goal		range and average values are the same if a single
MFL	Million Fibers per Liter		value is reported for samples collected once or
MRDL	Maximum Residual Disinfectant Level		twice annually
MRDLG	Maximum Residual Disinfectant Level Goal	RL	Reporting Limit
MWD	Metropolitan Water District of Southern California	SI	Saturation Index (Langelier)

Aggressiveness Index

Not Applicable

NA

TDS Total Dissolved Solids
TON Threshold Odor Number
TT Treatment Technique is a required process intended to reduce the level of a contaminate in drinking water
TTHM Total Trihalomethanes
TVMWD Three Valleys Municipal Water District
UCMR5 Fifth unregulated contaminant monitoring rule

NOTES

- (a) Metropolitan and Three Valleys MWD monitors turbidity at the CFE locations (i) using continuous and grab samples. Turbidity, a measure of cloudiness of the water, is an indicator of treatment performance. Turbidity was in compliance with the TT primary drinking water standard and the secondary drinking water standard of less than 5 NTU.
- (b) Results are based on Rowland Water District's distribution system's highest monthly percent positives. 954 samples were analyzed in 2024. The highest monthly percentage was 0%. Total coliform MCLs: No more than 5.0% of the monthly samples may be total coliform positive.
- (c) The MCL for E. coli is based on routine and repeat samples that are total coliform-positive, and either is E. coli-positive or the system fails to take repeat samples following an E. coli-positive routine sample, or the system fails to analyze a total coliform-positive repeat sample for E. coli. The MCL was not violated.
- (d) Aluminum and Copper have both primary and secondary standards.
- (e) All distribution system samples had detectable total chlorine residuals, so no HPC was required. Metropolitan and Three Valleys MWD monitors HPCs to ensure treatment process efficacy.
- Lead and Copper samples are required to be collected once every three years during the months of June - September. Sample results are from 2024.
- Al ≥ 12.0 = Non-aggressive water; Al 10.0-11.9 = Moderately aggressive water; Al ≤ 10.0 = Highly aggressive water. Reference: ANSI/AWWA Standard C400-93 (R98)
- (h) Compliance with the state and federal bromate MCL is based on RAA.
- Compliance with odor threshold secondary MCL is based on RAA. Treatment (a) Data are from voluntary monitoring of constituents and are provided for plants begin quarterly monitoring if annual monitoring results are above 3.

- Positive SI = non-corrosive; tendency to precipitate and/or dissolve scale on pipes. Negative SI = corrosive; tendency to dissolve calcium carbonate. Reference: Standard Methods (SM2330)
- RWD was in compliance with all provisions of the Stage 2 Disinfectants and Disinfection By-Products Rule (D/DBPR). Compliance was based on the highest Locational Running Annual Average (LRAA) of all data collected at distribution system-wide monitoring locations.
- Positive <u>CCPP</u> = non corrosive; tendency to precipitate and/or deposit scales on pipe. Negative <u>CCPP</u> = corrosive; tendency to dissolve calcium carbonate. Reference: Standard Methods (SM 2330)
- (m) Metropolitan was in compliance with all provisions of the State's fluoridation system requirements. TVWD does not have fluoride feed systems and all fluoride results are naturally occurring.
- (n) Metropolitan's TDS compliance data are based on flow-weighted monthly composite samples collected twice per year (April and October). The 12-month statistical summary of flow-weighted data is reported in "Other Parameters". TVMVD is required to test once annually for TDS.
- (o) Statistical summary represents 12 months of flow-weighted data and values may be different than the TDS reported to meet compliance with secondary drinking water regulations for Metropolitan. Metropolitans and TVMWD TDS goal is < 500 mg/L.
- (p) Compliance with the State MCL for aluminum is based on RAA. No secondary standard MCL exceedance occurred at the Metropolitan or TVMWD plant effluents.
- informational purposes.

Minutes of the Regular Meeting of the Board of Directors of the Rowland Water District June 10, 2025 – 6:00 p.m. 3021 Fullerton Road Rowland Heights CA 91748

PLEDGE OF ALLEGIANCE

ROLL CALL OF DIRECTORS

President John Bellah Director Robert W. Lewis Director Anthony J. Lima

ABSENT:

Vice President Vanessa Hsu Director Szu Pei Lu-Yang

OTHERS PRESENT:

Samuel Johnson, Legal Counsel, Best Best & Krieger Jody Roberto, Three Valleys Municipal Water District Kirk Howie, Three Valleys Municipal Water District Tara Bravo-Mullaly, CV Strategies Haley Cole, CV Strategies

ROWLAND WATER DISTRICT STAFF

Tom Coleman, General Manager
Dusty Moisio, Assistant General Manager
Myra Malner, Director of Finance
Allen Davidson, Director of Operations
Gabriela Palomares, Executive Services Manager
Brittnie Gildea, Marketing and Social Media Coordinator
Elisabeth Mendez, Compliance and Safety Manager
Robert Leamy, Water Systems Supervisor

ADDITION(S) TO THE AGENDA – None.

PUBLIC COMMENT ON NON-AGENDA ITEMS – Ms. Tara Bravo-Mullay took a moment to introduce Ms. Haley Cole to the Board.

DIRECTOR REMOTE PARTICIPATION PURSUANT TO GOV. CODE §54953(f)

- Notifications Due to Just Cause None.
- Requests Due to Emergency Circumstances None.

1. CONSENT CALENDAR

Upon motion by Director Bellah, seconded by Director Lima, the Consent Calendar was unanimously approved as follows:

- 1.1 Approval of Minutes of Regular Board Meeting held on May 20, 2025
- 1.2 Approval of Minutes of Special Board Meeting held on May 27, 2025
- 1.3 Demands on General Fund Account for May 2025
- 1.4 Investment Report for April 2025
- 1.5 Water Purchases for April 2025
- **1.6** California Reservoir Conditions (Motion passed 3-0)
- Board members took a moment to add the July 8, 2025, Regular Board, and July 22, 2025, Special Board meetings to their calendars.

2. ACTION ITEMS

2.1 Review and Approve Directors' Meeting Reimbursements for May 2025

Upon motion by Director Lima, seconded by Director Lewis, the Board unanimously approved the Directors' Meeting Reimbursement Report as presented. (Motion passed 3-0)

2.2 Annual Water Supply and Demand Assessment Report Prepared by Stetson Engineers

The Board was asked to receive, approve, and authorize the filing of the Annual Water Supply and Demand Assessment Report included in the Board packet. Elisabeth Mendez, Compliance and Safety Manager, explained that this report evaluates the District's anticipated water supply and demand conditions for the upcoming fiscal year, serving as a planning tool to identify potential shortages and response actions based on RWD's adopted Water Shortage Contingency Plan (WSCP). She concluded her report by noting that RWD's water supplies are projected to meet the monthly potable and non-potable unconstrained water demands for the coming fiscal year.

Following discussion, upon motion by Director Lima, seconded by Director Lewis, the Board unanimously approved, received and authorized the filing of the Annual Water Supply and Demand Assessment Report of Fiscal Year 2025-26. (Motion passed 3-0)

2.3 Consider Adoption of Resolution No. 6-2025, Placing in Nomination Robert W. Lewis as a Director of the Association of California Water Agencies (ACWA) Region 8

Upon motion by Director Lima, seconded by Director Bellah, the Board unanimously adopted RWD Resolution No. 6-2025, Placing in Nomination Robert W. Lewis as a Director of the Association of California Water Agencies Region 8, by the following roll call vote:

Ayes: Directors Bellah, Lewis, and Lima

Noes: None

Abstain: None

Absent: Directors Hsu and Lu-Yang

(Motion passed 3-0)

2.4 Schedule Public Hearing for the 2022-2024 Public Health Goals Report

Upon motion by Director Lewis, seconded by Director Lima, the Board unanimously approved the scheduling of a public hearing to be held on July 8, 2025, at 6:00 p.m., for the purpose of receiving, approving, and filing the 2022-2024 Public Health Goals Report. (Motion passed 3-0)

2.5 Grant of Easement to New Cingular Wireless PCS at Artigas Reservoir Site

Assistant General Manager Dusty Moisio presented a request for approval of a grant of easement to New Cingular Wireless PCS at the Artigas Reservoir site. By way of background, he noted that a similar request was previously approved by the Board on March 11, 2025. However, following approval of the grant, additional administrative edits to the easement documentation were identified. Included in the Board packet are the proposed final (clean) version of the easement and a redline version for comparison.

Following discussion, upon motion by Director Lima and seconded by Director Lewis, the Board unanimously approved a grant of easement to New Cingular Wireless PCS to perform work on underground communication systems located at Artigas Reservoir site (APN 8265-015-900). (Motion passed 3-0)

2.6 Rowland Heights Buckboard Days Parade 2025 Sponsorship

Upon motion by Director Bellah, seconded by Director Lima, staff was instructed to move forward with the 'Event' sponsorship level for the Rowland Height's Buckboard Days Parade and further directed staff continue with preparatory tasks in relation to the District's participation in the event. (Motion passed 3-0)

3. INFORMATIONAL ITEMS

3.1 Elisabeth Mendez, Compliance and Safety Manager, presented the 2024 Water Quality Report, also known as the Consumer Confidence Report, to the Board of Directors. Ms. Mendez provided an overview of the report's findings, noting that RWD met all applicable water quality standards. She further stated that the report will be made available to the public by June 11, 2025, via the District's website or in hard copy upon request. She concluded her presentation by recognizing District staff and CV Strategies for their efforts in preparing the report.

4. PUBLIC RELATIONS

4.1 Community Relations and Education Update

Marketing and Social Media Coordinator Brittnie Gildea showcased the video of the May 10, 2025, Discover RWD Fest.

4.2 Communications Outreach (CV Strategies)

Tara Bravo-Mullaly of CV Strategies presented a communications update outlining recent press and media releases along with projects supporting the District's outreach efforts.

5. DISCUSSION OF UPCOMING CONFERENCES, WORKSHOPS, OR EVENTS (INCLUDING ITEMS THAT MAY HAVE ARISEN AFTER THE POSTING OF THE AGENDA)

• For calendar purposes, General Manager Coleman noted the upcoming Three Valleys Municipal Water District Leadership Breakfast scheduled for June 26, 2025.

6. LEGISLATIVE INFORMATION

6.1 General Manager Tom Coleman reported that the District signed on to a coalition letter in support of the Delta Conveyance Project (DCP) Streamlining Trailer Bill, a legislative package designed to expedite processes that would enable informed decision-making regarding potential construction investments in the DCP.

Kirk Howie, Three Valleys Municipal Water District Chief Administrative Officer, took a moment to speak on AB 259 (Rubio). He advised that the bill passed the full Assembly and was referred to the Senate Local Government and Judiciary Committees. This bill proposes to extend the Brown Act's teleconferencing provisions from expiring on January 1, 2026, to January 1, 2030.

General Manager Coleman then continued his report with an update on SB 454 (McNerney), which proposes a creation of a PFAS mitigation fund in the California State Treasury to be administered by the State Water Resources Control Board. He noted that RWD signed on to a coalition support letter led by ACWA, in partnership with the League of California Cities, who have co-sponsored the bill.

7. REVIEW OF CORRESPONDENCE

7.1 The Board acknowledged the drawings and thank-you notes received from students of Rorimer Elementary School, expressing appreciation of the District-funded water education programs they participated in, as well as the dedicated time and support provided by RWD staff time throughout the school year.

8. COMMITTEE REPORTS

- **8.1 Joint Powers Insurance Authority None**
- **8.2** Three Valleys Municipal Water District Directors Lima and Board President Bellah provided updates on business matters discussed during the May 20, and June 4, 2025, TVMWD Board meetings.
- 8.3 Association of California Water Agencies None.
- **8.4** Puente Basin Water Agency (PBWA) Directors Lima and Lewis reported on PBWA business matters discussed during the June 5, 2025, meeting.
- **8.5** Project Ad-Hoc Committee None.
- **8.6** Regional Chamber of Commerce None.
- **8.7** P-W-R Joint Waterline Commission The next P-W-R Joint Water Line Commission meeting is scheduled to be held on June 12, 2025, at Walnut Valley Water District.
- **8.8 Rowland Heights Community Coordinating Council (RHCCC)** Board President Bellah noted his attendance at the June 9, 2005, RHCCC meeting, where Rowland Water District General Manager Tom Coleman and Walnut Valley Water District General Manager Sheryl Shaw gave a joint presentation on water system reliability and firescaping. General Manager Coleman also provided additional remarks highlighting key points from his portion of the presentation.
- 8.9 California Special District Association (CSDA) SGV Chapter None.

8.10 Local Agency Formation Commission – None.

9. OTHER REPORTS, INFORMATION ITEMS AND COMMENTS

9.1 Finance Report

Director of Finance, Myra Malner, presented a year-to-date Financial Dashboard containing comparative graphs of Revenue and Expense by Category and Consumption by Class through April 2025 and answered questions posed by Board members.

9.2 Operations Report

Director of Operations Allen Davidson provided an Operations report for the month of May 2025, explaining the Field Operations services listed below. He also presented on additional Water Systems departmental updates such as leaks and fire hydrant data, and water quality results (total chlorine and nitrite).

Field Operations – May 2025

- Water Samples 229
- Site Inspections 68
- Service Orders Completed 410
- Meters Replaced 66
- Modules Replaced 13
- Dig Alerts 320
- Service Lines Replaced 6
- System Valves Replaced 10
- Air Releases Inspections 7
- Fire Hydrant Repairs 2
- Recycled Water Inspections 16
- 9.3 Project Update Assistant General Manager Dusty Moisio reported on the completion of a large meter replacement project at Casa La Paz Apartments, highlighting the extensive work performed by District staff. This project involved replacing an existing 8-inch meter with a new ultrasonic meter. District crews carried out the installation of the new isolation valves, reconfigured the bypass, and replaced the vault and lid to accommodate the upgraded equipment. While the customer was responsible for installing the required backflow assembly, District staff completed all other critical components of the project. Mr. Moisio presented before-and after photos to illustrate the scope and quality of work performed.
- **9.4 Personnel Report** General Manager Tom Coleman reported that the District welcomed a new Customer Service Representative, who began employment on June 2, 2025.

10. ATTORNEY'S REPORT – None.

11. CLOSED SESSION

A Closed Session was not held in connection with the items listed below:

Conference with Legal Counsel – Existing Litigation [§54956.9]
 Paragraph (1) of subdivision (d) of §54956.9
 Haste, et al. vs Rowland Water District

■ Conference with Legal Counsel – Anticipated Litigation
Initiation of litigation pursuant to paragraph (4) of subdivision (d) of Section 54956.9 One case.

General Manager's and Directors' Comments – None.

Future Agenda Item(s) – None.

Late Business – None.

President Bellah adjourned the meeting at 7:43 p.m.

Attest:

JOHN BELLAH
Presiding Director

TOM COLEMAN
Board Secretary

3021 Fullerton Road Rowland Heights, CA 91748 Board Room

Guest Sign-In Sheet

Special Board Meeting Date: June 10, 2025

Company Name (If Applicable)	Mailing or Email Address
CV Strategies	
Jan	
·	
1	
7	1
	Company Name (If Applicable)

Note: By signing this sheet, your name will be included as a Guest in our recorded Board Minutes.

RESOLUTION NO. 6-2025 ROWLAND WATER DISTRICT

RESOLUTION OF THE BOARD OF DIRECTORS PLACING IN NOMINATION ROBERT W. LEWIS AS A DIRECTOR OF THE ASSOCIATION OF CALIFORNIA WATER AGENCIES REGION 8

WHEREAS, The Board of Directors of Rowland Water District ("District") does encourage and support the participation of its members in the affairs of the Association of California Water Agencies (ACWA). Robert W. Lewis has indicated a desire to serve as a Director of ACWA Region 8; and

NOW, THEREFORE, BE IT RESOLVED by the Board of Directors of the Rowland Water District

- **A.** Does place in full and unreserved support in the nomination of ROBERT W. LEWIS for the position of Director of ACWA Region 8; and
- **B.** Does hereby determine that the expenses incurred in connection with the service of Robert W. Lewis in ACWA Region 8 shall be borne by Rowland Water District

PASSED, APPROVED, AND ADOPTED at the regular meeting of the Board of Directors held June 10, 2025, by the following roll call vote:

AYES:

Directors Bellah, Lewis, and Lima

NOES:

None

ABSENT: Directors Hsu and Lu-Yang

ABSTAIN: None

JOHN BELLAH

President

ATTEST:

TOM COLEMAN

General Manager

I certify that the forgoing Resolution is a true and correct copy of the Resolution of the Board of Directors of the Rowland Water District adopted on June 10, 2025.

TOM COLEMAN

Board Secretary

ROWLAND WATER DISTRICT

Check Register - GL DETAILW/DESCRIPTION Check Issue Dates: 6/1/2025 - 6/30/2025

Page: 1 Jul 01, 2025 01:22PM

Report Criteria:

Report type: GL detail

GL Period	Check Issue Date	Check Number	Vendor Number	Payee	Description	Check Amount
34922						
06/25	06/04/2025	34922	62622	AKM CONSULTING ENGINEERS	RWD ON CALL SERVICES	627.00
To	otal 34922:					627.00
34923						
06/25	06/04/2025	34923		CLA-VAL- GRISWOLD INDUSTRIES	TOMICH CLA-VAL MAINTENANCE	5,181.20
06/25	06/04/2025	34923		CLA-VAL- GRISWOLD INDUSTRIES	TAX	232.74
06/25	06/04/2025	34923		CLA-VAL- GRISWOLD INDUSTRIES	ZONE 6 CLA-VAL MAINTENANCE	5,154.20
06/25	06/04/2025	34923	383	CLA-VAL- GRISWOLD INDUSTRIES	TAX	300.13
To	otal 34923:					10,868.27
4924						
06/25	06/04/2025	34924	1900	CLINICAL LAB OF S B	WATER SAMPLES-APRIL	2,245.00
To	otal 34924:					2,245.00
3 4925 06/25	06/04/2025	34925	62645	CORE & MAIN	HACH NITRITE CHEMKEY REAGENTS	2,893.46
00/23	00/04/2023	04920	02043	COILE & MAIN	HAGHWINITE OFFICIAL TREADERTO	2,090.40
To	otal 34925:					2,893.46
4926						
06/25	06/04/2025	34926		D & H WATER SYSTEMS	TIDAL WAVE NON VFD MIXER FOR RESERVOIR 3	20,200.00
06/25	06/04/2025	34926		D & H WATER SYSTEMS	SHIPPING	250.00
06/25	06/04/2025	34926		D & H WATER SYSTEMS	TAX	1,993.88
06/25	06/04/2025	34926		D & H WATER SYSTEMS	TIDAL WAVE NON VFD MIXER FOR RESERVOIR 9	20,200.00
06/25	06/04/2025	34926		D & H WATER SYSTEMS	SHIPPING	250.00
06/25	06/04/2025	34926	62505	D & H WATER SYSTEMS	TAX	1,993.88
To	otal 34926:					44,887.76
4927						
06/25	06/04/2025	34927	62445	EXCEL DOOR & GATE COMPANY	PERFORM SEMI ANNUAL PM ON 2 DOORS AND 1	375.00
06/25	06/04/2025	34927	62445	EXCEL DOOR & GATE COMPANY	PERFORM SEMI ANNUAL PM ON DOOR-ASHBOUR	257.00
06/25	06/04/2025	34927		EXCEL DOOR & GATE COMPANY	PERFORM SEMI ANNUAL PM ON DOOR-VANTAGE	285.00
06/25	06/04/2025	34927	62445	EXCEL DOOR & GATE COMPANY	REPAIR FRONT DOUBLE ENTRY DOOR	4,015.00
To	otal 34927:					4,932.00
34928						
06/25	06/04/2025	34928	24701	GRAINGER	SUPPLIES FOR RES	472.64
06/25	06/04/2025	34928	24701	GRAINGER	SUPPLIES FOR RES	945.29
To	otal 34928:					1,417.93
4929						
06/25	06/04/2025	34929	62925	HENSCHEL PUMP TEST LLC	EFFICIENCY TESTS/IR INSPECTION	3,025.00
06/25	06/04/2025	34929	62925	HENSCHEL PUMP TEST LLC	EFFICIENCY TESTS/IR INSPECTION	2,025.00

Page: 2 Jul 01, 2025 01:22PM

GI Check Check Vendor Description Check Period Issue Date Number Number Payee Amount 34930 06/25 06/04/2025 34930 62863 HIGH-TECH SYSTEMS INSTALL NEW LAB DOOR ACCESS CNTRL. INCLUD 2,827.40 62863 HIGH-TECH SYSTEMS 198.52 06/25 06/04/2025 34930 06/04/2025 62863 HIGH-TECH SYSTEMS 18/2 POWER CABLE WITH TERMINATION 06/25 34930 1,557.80 Total 34930: 4,583.72 34931 06/25 06/04/2025 34931 27211 HILL BROS CHEMICAL CO CHEMICAL FOR RES 1,146.64 Total 34931: 1,146.64 34932 06/25 06/04/2025 34932 244 INFOSEND INC **BILLING SERVICE** 82.63 244 INFOSEND INC **BILLING SERVICE** 2,350.79 06/25 06/04/2025 34932 06/25 06/04/2025 34932 244 INFOSEND INC **BILLING SERVICE** 1,706.06 Total 34932: 4,139.48 34933 62932 NAZ ELECTRIC AND CONTROLS INC INDUSTRY WELL CO2 ANALYZER PID TUNING 475.00 06/25 06/04/2025 34933 Total 34933: 475.00 34934 06/25 06/04/2025 34934 189 NOBEL SYSTEMS **GIS UPDATES** 5,940.00 06/25 06/04/2025 34934 189 NOBEL SYSTEMS GEOVIEWER EASEMENT INSPECTION MODULE A 1,500.00 Total 34934: 7.440.00 34935 PAINTING FIRE HYDRANTS 06/25 06/04/2025 34935 62649 OPARC 3,367.76 Total 34935: 3,367.76 34936 46201 PITNEY BOWES BANK INC PURCHAS 06/25 06/04/2025 34936 SENDPRO C SERIES 245.19 Total 34936: 245.19 34937 YARD SIGNS 06/25 06/04/2025 34937 62839 PrintMyStuff.com 203.18 Total 34937: 203.18 34938 06/25 06/04/2025 5000 PUENTE BASIN WATER AGENCY WEST YOST-MAR 2025 9,095.33 34938 06/25 06/04/2025 5000 PUENTE BASIN WATER AGENCY DOTY LABOR RETENTION 24,996.90 34938 06/25 06/04/2025 34938 5000 PUENTE BASIN WATER AGENCY MORROW MEADOW 780.29 06/25 06/04/2025 34938 5000 PUENTE BASIN WATER AGENCY SERVICE & REG FEE-1905 FAIRPLEX 25.50 06/25 06/04/2025 34938 5000 PUENTE BASIN WATER AGENCY LEGAL-APR 2025 1,443.75 CIVILTEC WELL MGMT 06/25 06/04/2025 34938 5000 PUENTE BASIN WATER AGENCY 375.00 5000 PUENTE BASIN WATER AGENCY **REEB-JUNE 2025** 06/25 06/04/2025 34938 2,250.00 Total 34938: 38,966.77

Page: 3 Jul 01, 2025 01:22PM

GI Check Check Vendor Description Check Period Issue Date Number Number Payee Amount 34939 06/25 06/04/2025 34939 62460 RYAN WHITE TOTAL EXPENSES-T2 RENEWAL 60.00 Total 34939: 60.00 34940 06/25 06/04/2025 62502 S & J SUPPLY COMPANY, INC CREDIT MEMEO 319.34-34940 **TOOLS & SUPPLIES** 06/25 06/04/2025 62502 S & J SUPPLY COMPANY, INC 554 56 34940 06/25 06/04/2025 62502 S & J SUPPLY COMPANY, INC **TOOLS & SUPPLIES** 1.047.02 34940 06/25 06/04/2025 34940 62502 S & J SUPPLY COMPANY, INC **TOOLS & SUPPLIES** 554.56 06/25 06/04/2025 34940 62502 S & J SUPPLY COMPANY, INC SUPPLIES FOR SERVICES 2,677.90 06/25 06/04/2025 34940 62502 S & J SUPPLY COMPANY, INC MATERIAL FOR LARGE METER REPLACEMENTS 504.87 06/25 06/04/2025 34940 62502 S & J SUPPLY COMPANY, INC MATERIAL FOR LARGE METER REPLACEMENTS 1,214.93 Total 34940: 6,234.50 34941 GAS UTILITY BILL 06/25 06/04/2025 34941 5900 SOCALGAS 65.08 Total 34941: 65.08 34942 06/25 06/04/2025 34942 62813 SOUTHLAND CIVIL ENGINEERING & S ESTABLISH THE BOUNDARIES OF AN ACCESS EA 11,430.00 Total 34942: 11,430.00 34943 06/25 06/04/2025 62406 UNITED RENTALS **BOOM 65-70 TELESCOPIC** 34943 2 361 61 Total 34943: 2.361.61 34944 06/25 06/05/2025 34944 3550 SOUTHERN COUNTIES FUELS **UNLEADED FUEL** 6,098.86 06/25 06/05/2025 34944 3550 SOUTHERN COUNTIES FUELS **FUEL SURCHARGE** 9.92 06/25 06/05/2025 34944 3550 SOUTHERN COUNTIES FUELS REGULATORY COMPLIANCE 12.95 Total 34944: 6,121.73 34945 LEADERSHIP ACADEMY LUNCHEON 06/25 06/10/2025 62789 MY YUMMY TACOS 435.22 34945 Total 34945: 435.22 34946 06/25 06/10/2025 34946 62309 CITY OF INDUSTRY CITY HALL RECYCLED WATER SYSTEM 9,912.00 Total 34946: 9,912.00 34947 06/25 06/10/2025 34947 62309 CITY OF INDUSTRY CITY HALL RECYCLED WATER SYSTEM-CIP 4.582.20 Total 34947: 4,582.20 34948 06/25 06/10/2025 34948 3375 ANTHONY J. LIMA MILEAGE REIMBURSEMENT 67.20

ROWLAND	WATER	DISTRICT
ROWLAND	WAIER	וטואופוע

Page: 4 Jul 01, 2025 01:22PM

GI Check Check Vendor Description Check Period Issue Date Number Number Pavee Amount Total 34948: 67.20 34949 06/25 06/10/2025 34949 62597 BEST BEST & KRIEGER LLP LEGAL FEES-GENERAL COUNSEL 3,988.52 06/10/2025 62597 BEST BEST & KRIEGER LLP LEGAL FEES-LABOR AND EMPLOYMENT 207.00 06/25 34949 06/10/2025 62597 BEST BEST & KRIEGER LLP LEGAL FEES-CELL LEASES AND RELATED ISSUES 06/25 34949 2,359.80 62597 BEST BEST & KRIEGER LLP 06/25 06/10/2025 34949 LEGAL FEES-REAL PROPERTY 2,152.80 Total 34949: 8,708.12 34950 06/25 06/10/2025 34950 62873 EVERBRIDGE INC PUBLIC COMMINICATIONS ADVANCED 5,700.00 Total 34950: 5,700.00 34951 WINDOW CLEANING 06/25 06/10/2025 34951 62066 JANITORIAI SYSTEMS 450 00 Total 34951: 450.00 34952 06/25 06/10/2025 34952 62233 JOHN BELLAH MILEAGE REIMBURSMENT 67.20 06/25 06/10/2025 34952 62233 JOHN BELLAH TOTAL EXPENSES-ACWA CONFERENCE 199.45 Total 34952: 266.65 34953 06/25 06/10/2025 3360 ROBERT LEWIS MILEAGE REIMBURSEMENT 34953 11.20 06/10/2025 3360 ROBERT LEWIS TOTAL EXPENSES-ACWA CONFERENCE 06/25 34953 303.25 Total 34953: 314.45 34954 06/25 06/10/2025 34954 62831 VANESSA HSU TOTAL EXPENSES-ACWA CONFERENCE 72.46 Total 34954: 72.46 34955 NEW VAULT DOOR FOR OFFICE 06/25 06/10/2025 62914 VAULT PRO INC. 34955 10.958.19 Total 34955: 10,958.19 34956 06/25 06/12/2025 34956 62558 PUENTE BASIN WATER AGENCY PM 22/PM 9 CONNECTION 320,438.10 06/12/2025 62558 PUENTE BASIN WATER AGENCY TVMWD CONNECTION CAPACITY 2,155.73 06/25 34956 06/12/2025 62558 PUENTE BASIN WATER AGENCY TVMWD EQUIVALENT SMALL METER 06/25 34956 2,729.45 06/25 06/12/2025 34956 62558 PUENTE BASIN WATER AGENCY TVMWD WATER USE CHARGE 1,510.53 06/25 06/12/2025 62558 PUENTE BASIN WATER AGENCY MWD CAPACITY CHARGE 8,294.25 34956 06/25 06/12/2025 62558 PUENTE BASIN WATER AGENCY MWD READINESS TO SERVE CHARGE 31,129.77 34956 06/25 06/12/2025 34956 62558 PUENTE BASIN WATER AGENCY MWD LRP CREDIT-MAR 2025 830 00-ADJUSTMENT FOR CAL DOMESTIC PRODUCTION-06/25 06/12/2025 34956 62558 PUENTE BASIN WATER AGENCY 120.026.72 62558 PUENTE BASIN WATER AGENCY CYCLIC STORAGE 1/2 600 AF@\$912/AF 06/25 06/12/2025 34956 273,600.00 Total 34956: 759,054.55

Check Register - GL DETAILW/DESCRIPTION

Page: 5 Jul 01, 2025 01:22PM

Check Issue Dates: 6/1/2025 - 6/30/2025

GL	Check	Check	Vendor		Description	Check
Period	Issue Date	Number	Number	Payee 		Amount
34957						
06/25	06/12/2025	34957	4750	PWR JT WATER LINE COMMISSION	PM 15 Water Use	100,733.26
06/25	06/12/2025	34957	4750	PWR JT WATER LINE COMMISSION	PM 21 Water Use	364,406.52
06/25	06/12/2025	34957	4750	PWR JT WATER LINE COMMISSION	MWD CAPACITY RESERVATION CHARGE	7,633.82
06/25	06/12/2025	34957	4750	PWR JT WATER LINE COMMISSION	TVMWD CONNECTED CAPACITY CHARGE	1,738.95
06/25	06/12/2025	34957	4750	PWR JT WATER LINE COMMISSION	TVMWD WATER USE CHARGE	2,685.10
Т	otal 34957:					477,197.65
34959						
06/25	06/25/2025	34959	1000	ACWA JPIA	EMPLOYEE HEALTH BENEFITS	60,947.08
06/25	06/25/2025	34959	1000	ACWA JPIA	EMPLOYEE VISION BENEFITS	724.95
06/25	06/25/2025	34959	1000	ACWA JPIA	EMPLOYEE ASSISTANCE PROGRAM	66.96
06/25	06/25/2025	34959	1000	ACWA JPIA	EMPLOYEE DENTAL BENEFITS	4,297.68
06/25	06/25/2025	34959	1000	ACWA JPIA	RETIREES HEALTH BENEFITS	13,666.19
06/25	06/25/2025	34959	1000	ACWA JPIA	DIRECTORS HEALTH BENEFITS	9,229.82
Т	otal 34959:					88,932.68
34960						
06/25	06/25/2025	34960	62554	APPLIED TECHNOLOGY GROUP	EMERGENCY RADIOS	360.00
Т	otal 34960:					360.00
34961						
06/25	06/25/2025	34961	400	AT&T MOBILITY	MOBILE PHONES, IPADS	1,657.09
Т	otal 34961:					1,657.09
34962						
06/25	06/25/2025	34962	62597	BEST BEST & KRIEGER LLP	LEGAL FEES-GENERAL COUNSEL	3,828.80
06/25	06/25/2025	34962	62597	BEST BEST & KRIEGER LLP	LEGAL FEES-CELL LEASES AND RELATED ISSUES	165.60
06/25	06/25/2025	34962	62597	BEST BEST & KRIEGER LLP	LEGAL FEES-REAL PROPERTY	952.20
Т	otal 34962:					4,946.60
34963						
06/25	06/25/2025	34963	62524	BRITTNIE GILDEA	MILEAGE REIMBURSEMENT	78.82
Т	otal 34963:					78.82
34964 06/25	06/25/2025	34964	62790	C & K TIRE SERVICE	TIRES FOR HP150 CASE	455.03
00/23	00/23/2023	34304	02190	C & K TIKE SERVICE	TIKES FOR TIF 130 CASE	433.03
Т	otal 34964:					455.03
34965 06/25	06/25/2025	34965	1079	CA-NV SECTION AWWA	CROSS CONNECTION SPECIALIST RENEWAL-DUS	135.00
1	otal 34965:					135.00
34966	06/25/2025	34066	402	CASELLE INC	MONTHLY MAINTENANCE AND SUDDODT	2 504 00
06/25	06/25/2025	34966	403	CASELLE INC	MONTHLY MAINTENANCE AND SUPPORT	2,501.00
Т	otal 34966:					2,501.00

ROWLAND WATER DISTRICT	Check Register - GL DETAILW/DESCRIPTION	Page: 6
	Check Issue Dates: 6/1/2025 - 6/30/2025	Jul 01, 2025 01:22PM

				Check Issue Dates:	6/1/2025 - 6/30/2025	Jul 01, 2025 01:22PM
GL Period	Check Issue Date	Check Number	Vendor Number	Payee	Description	Check Amount
34967 06/25	06/25/2025	34967	6966	CINTAS	UNIFORM RENTAL	6,091.66
To	otal 34967:					6,091.66
34968 06/25	06/25/2025	34968	62700	CITIZENS TRUST C/O CITIZEN BUSIN	TRUSTEES FEES	2,103.00
To	otal 34968:					2,103.00
34969						
06/25	06/25/2025	34969	62705	COMP	BAT TEST	50.00
06/25	06/25/2025	34969	62705	COMP	PHYSICAL EXAM	95.00
06/25	06/25/2025	34969	62705	COMP	QUICK TEST	70.00
06/25	06/25/2025	34969	62705	COMP	LIFT TEST	80.00
06/25	06/25/2025	34969		COMP	PHYSICAL EXAM	115.00
To	otal 34969:					410.00
34970						
06/25	06/25/2025	34970	1270	CORELOGIC SOLUTIONS LLC	PROPERTY DATA INFO	100.00
To	otal 34970:					100.00
34971						
06/25	06/25/2025	34971	62702	DIRECT CONNECTION MAILING	MAILING SERVICE	1,611.60
To	otal 34971:					1,611.60
34972 06/25	06/25/2025	34972	22541	DOTY BROS CONSTRUCTION CO	JOB 1300-24050-INSTALL 1" WATER SERVICE-1860	10,584.00
To	otal 34972:					10,584.00
34973						
06/25	06/25/2025	34973	62433	EMPLOYEE RELATIONS INC	BACKGROUND VERIFICATION	121.27
To	otal 34973:					121.27
34974						
06/25	06/25/2025	34974	62792	ESMERALDA MALNER	MILEAGE REIMBURSEMENT	294.00
To	otal 34974:					294.00
34975 06/25	06/25/2025	34975	2300	FEDERAL EXPRESS	POSTAGE	54.20
		0.070	2000	TESERVIE EN NESS	. 66.7.62	
10	otal 34975:					54.20
34976						
06/25	06/25/2025	34976	2550	FRONTIER	INTERNET ACCESS	890.00
06/25	06/25/2025	34976		FRONTIER	PHONE SERVICE	655.46
To	otal 34976:					1,545.46
34977 06/25	06/25/2025	34977	5600	G M SAGER CONSTRUCTION	ASPHALT	24,217.50

Page: Jul 01, 2025 01:22PM

7

GI Check Check Vendor Description Check Period Issue Date Number Number Pavee Amount 06/25 06/25/2025 34977 5600 G M SAGER CONSTRUCTION **ASPHALT** 10,660.50 06/25 06/25/2025 34977 5600 G M SAGER CONSTRUCTION **ASPHALT** 11,145.00 5600 G M SAGER CONSTRUCTION **ASPHALT** 06/25 06/25/2025 34977 6,301.25 5600 G M SAGER CONSTRUCTION CONCRETE 06/25 06/25/2025 34977 9,097.00 Total 34977: 61,421.25 34978 06/25 06/25/2025 34978 62934 G3 GREEN GARDENS GROUP LLC LANDSCAPE WORKSHOP 3,300.00 Total 34978: 3,300.00 34979 06/25 06/25/2025 34979 62812 GROWING ROOTS LLC MONTHLY PLANT CARE 365.00 Total 34979: 365.00 34980 06/25 06/25/2025 34980 2630 HADDICK'S TOWING LLC TOWING CHARGE-TRUCK #6 100.00 Total 34980: 100.00 34981 06/25 06/25/2025 34981 62624 HASA INC CHEMICALS FOR RCS 572.60 06/25 06/25/2025 34981 62624 HASA INC CHEMICALS FOR RCS 486.86 06/25 06/25/2025 34981 62624 HASA INC CHEMICALS FOR RCS 1,304.42 06/25 06/25/2025 34981 62624 HASA INC CHEMICALS FOR RCS 826.75 06/25/2025 62624 HASA INC CHEMICALS FOR RCS 06/25 34981 508 30 06/25 06/25/2025 34981 62624 HASA INC CHEMICALS FOR RCS 569.54 06/25 06/25/2025 34981 62624 HASA INC CHEMICALS FOR RCS 802.16 06/25 06/25/2025 34981 62624 HASA INC CHEMICALS FOR RCS 1.056.40 06/25 06/25/2025 34981 62624 HASA INC CHEMICALS FOR RCS 447.70 06/25 06/25/2025 34981 62624 HASA INC CHEMICALS FOR RCS 443.99 Total 34981: 7,018.72 34982 06/25 06/25/2025 34982 379 HIGHROAD INFORMATION TECHNOL MAINTENANCE, SUPPORT AND SOFTWARE RENE 16,559.00 06/25 06/25/2025 34982 379 HIGHROAD INFORMATION TECHNOL MANAGED IT SERVICES 7,201.00 Total 34982: 23 760 00 34983 CHEMICAL FOR RES 06/25 06/25/2025 34983 27211 HILL BROS CHEMICAL CO 842.56 06/25 06/25/2025 34983 27211 HILL BROS CHEMICAL CO CHEMICAL FOR RES 2,030.00 06/25/2025 34983 27211 HILL BROS CHEMICAL CO CHEMICAL FOR RES 928.33 06/25 Total 34983: 3,800.89 34984 06/25 06/25/2025 34984 62852 HOLE PRODUCTS LLC NUWELL 110 50LBS 1,036.43 Total 34984: 1.036.43 34985 06/25 06/25/2025 34985 2724 HOME DEPOT CREDIT SERVICES **TOOLS & SUPPLIES** 1,677.86 2724 HOME DEPOT CREDIT SERVICES SUPPLIES FOR HYDRANTS 336.24 06/25/2025 34985

GL Period	Check Issue Date	Check Number	Vendor Number	Payee	Description	Check Amount
06/25	06/25/2025	34985	2724	HOME DEPOT CREDIT SERVICES	SUPPLIES FOR RES	289.16
06/25	06/25/2025	34985	2724	HOME DEPOT CREDIT SERVICES	SUPPLIES FOR METERS	213.51
06/25	06/25/2025	34985	2724	HOME DEPOT CREDIT SERVICES	MISC EXPENSE	23.86
06/25	06/25/2025	34985	2724	HOME DEPOT CREDIT SERVICES	COI EXPENSE	43.48
06/25	06/25/2025	34985	2724	HOME DEPOT CREDIT SERVICES	SUPPLIES FOR LARGE METER REPLACEMENTS	56.59
Т	otal 34985:					2,640.70
34986						
06/25	06/25/2025	34986	62834	HPS WEST, INC.	METERS	2,960.57
06/25	06/25/2025	34986	62834	HPS WEST, INC.	REGISTER HOUSING, SHROUD W/LID & STOPPER	657.48
06/25	06/25/2025	34986	62834	HPS WEST, INC.	METERS	1,876.46
06/25	06/25/2025	34986	62834	HPS WEST, INC.	1" SONATA METER POLYMER FLOW TUBE W/ INTE	4,318.05
06/25	06/25/2025	34986	62834	HPS WEST, INC.	TAX	421.01
06/25	06/25/2025	34986	62834	HPS WEST, INC.	FREIGHT	50.00
06/25	06/25/2025	34986	62834	HPS WEST, INC.	METERS	3,357.31
T	otal 34986:					13,640.88
34987						
06/25	06/25/2025	34987	62899	IB CONSULTING, LLC	2025 WATER RATE STUDY	12,900.00
T	otal 34987:					12,900.00
34988						
06/25	06/25/2025	34988	62435	INDUSTRY PUBLIC UTILITY COMMISSI	PUMPING POWER-PUMPSTATION 2A	2,000.11
T	otal 34988:					2,000.11
34989						
06/25	06/25/2025	34989	244	INFOSEND INC	INSERT-DISCOVER FEST	811.16
06/25	06/25/2025	34989	244	INFOSEND INC	BILLING SERVICE	2,318.84
T	otal 34989:					3,130.00
34990						
06/25	06/25/2025	34990	62066	JANITORIAL SYSTEMS	MONTHLY JANITORIAL SERVICES	660.00
T	otal 34990:					660.00
34991						
06/25	06/25/2025	34991	62748	JOEL DOUGLASS	TOTAL EXPENSES-BOOT ALLOWANCE	375.18
Т	otal 34991:					375.18
34992						
06/25	06/25/2025	34992	62664	M & J TREE SERVICE	MAINTENANCE SERVICE 6 SITES	6,600.00
06/25 06/25	06/25/2025 06/25/2025	34992 34992	62664 62664	M & J TREE SERVICE M & J TREE SERVICE	MONTHLY MAINTENANCE-WBS EXTRA MAINTENANCE FOR SPECIAL EVENT	600.00 600.00
00/23	00/25/2025	34992	02004	M & J TREE SERVICE	EXTRA IVIAINTENANCE FOR SPECIAL EVENT	
T	otal 34992:					7,800.00
34993						
06/25	06/25/2025	34993	62573	MANAGED MOBILE INC	FLEET MAINTENANCE MANAGEMENT FEE	55.00
06/25	06/25/2025	34993	62573	MANAGED MOBILE INC	MAINTENANCE ZEIMAN TRAILER	448.63

Page: 9 Jul 01, 2025 01:22PM

GL Period	Check Issue Date	Check Number	Vendor Number	Payee	Description	Check Amount
Т	otal 34993:					503.63
4994						
06/25	06/25/2025	34994	62078	MCKINNEY CONSTRUCTION CO INC	RES 12 RCS BUILDING	2,856.02
Т	otal 34994:					2,856.02
1995 06/25	06/25/2025	34995	62525	MORROW-MEADOWS CORPORATION	PANEL UPGRADE AND BOX CONNECTION	3,600.00
Т	otal 34995:					3,600.00
1996						
6/25	06/25/2025	34996	62735	MUTUAL OF OMAHA	LIFE INSURANCE	617.50
6/25	06/25/2025	34996	62735	MUTUAL OF OMAHA	SHORT/LONG TERM DISABILITY	1,766.81
6/25	06/25/2025	34996	62735	MUTUAL OF OMAHA	DIRECTORS LIFE INSURANCE	66.50
Т	otal 34996:					2,450.81
4997 06/25	06/25/2025	34997	62533	NICOLAY CONSULTING GROUP	VALUE OF FUTURE OPEB BENEFITS FOR EE	426.93
T	otal 34997:					426.93
1998						
6/25	06/25/2025	34998	189	NOBEL SYSTEMS	GEOVIEWER ONLINE ANNUAL SUBSCRIPTION (HO	23,000.00
6/25	06/25/2025	34998	189	NOBEL SYSTEMS	GEOVIEWER IOT DATA CONNECTOR TO RWD SCA	1,000.00
6/25	06/25/2025	34998	189	NOBEL SYSTEMS	GEOVIEWER RESERVOIR INSPECTION MODULE A	1,500.00
6/25	06/25/2025	34998	189	NOBEL SYSTEMS	UPDATES TO DISTRICT'S GIS	8,190.00
Т	otal 34998:					33,690.00
1999						
06/25	06/25/2025	34999	62858	NORTHSTAR CHEMICAL	CHEMICALS-WBS	1,849.96
Т	otal 34999:					1,849.96
5000 06/25	06/25/2025	35000	62033	ONTARIO REFRIGERATION SERVICES	MAINTENANCE AGREEMENT	712.00
		33000	02933	ONTARIO REI RIGERATION SERVICES	WAINT ENANCE AGNEEMENT	
1	otal 35000:				-	712.00
5 001 06/25	06/25/2025	35001	62448	PARS	ANNUAL ASSET FEE	1,907.43
T	otal 35001:					1,907.43
5002						
06/25	06/25/2025	35002	62839	PrintMyStuff.com	CCR SUPPLIES	602.08
06/25	06/25/2025	35002		PrintMyStuff.com	MAAP FUNDED PROJECT	1,923.68
Т	otal 35002:				_	2,525.76
5003						
06/25	06/25/2025	35003	62771	PUBLIC WATER AGENCIES GROUP	ASSESSMENT FOR EMERGENCY PREPAREDNESS	2,110.22
00/23						

ROWLAND WATER DISTRICT

Check Register - GL DETAILW/DESCRIPTION Check Issue Dates: 6/1/2025 - 6/30/2025

/DESCRIPTION Page: 10 5 - 6/30/2025 Jul 01, 2025 01:22PM

GL Period	Check Issue Date	Check Number	Vendor Number	Payee	Description	Check Amount
т	otal 35003:					4,220.44
35004						
06/25	06/25/2025	35004	62660	PUENTE HILLS FORD	MAINTENANCE TRUCKS 6, 47	2,041.86
					•	
Т	otal 35004:					2,041.86
35005						
06/25	06/25/2025	35005		PUENTE READY MIX INC	CRUSHER BASE & WASH CON SAND	2,665.56
06/25	06/25/2025	35005	5100	PUENTE READY MIX INC	W/CON PLANT SALES-SAND	1,325.62
Т	otal 35005:					3,991.18
35006						
06/25	06/25/2025	35006	5740	QUINN COMPANY	VANTAGE POINT GENSET BATTERY AND MAINTEN	4,515.84
06/25	06/25/2025	35006	5740	QUINN COMPANY	REPLACE RADIATOR ON GENSET (VANTAGE POIN	13,674.65
Т	otal 35006:					18,190.49
35007						
06/25	06/25/2025	35007	62871	RED WAVE COMMUNICATIONS & ELE	INSTALL NEW BREAKERS AND PULL NEW WIRES T	723.36
06/25	06/25/2025	35007	62871	RED WAVE COMMUNICATIONS & ELE	TROULESHOOT PUMP	1,099.70
06/25	06/25/2025	35007	62871	RED WAVE COMMUNICATIONS & ELE	WORK WITH SCE ON PUMP TERMINATIONS	1,934.01
06/25	06/25/2025	35007	62871	RED WAVE COMMUNICATIONS & ELE	INSTALL NEW CONDUIT WIRES AND BREAKER	3,061.30
06/25	06/25/2025	35007	62871	RED WAVE COMMUNICATIONS & ELE	TROUBLESHOOT POWER FAILURE-WBS	2,722.12
06/25	06/25/2025	35007	62871	RED WAVE COMMUNICATIONS & ELE	NEW SPARE ANALOG INPUT CARD FOR PLC INST	537.47
06/25	06/25/2025	35007	62871	RED WAVE COMMUNICATIONS & ELE	INSTALLATION OF NEW LOAD CENTER AND NEW 3	3,465.53
06/25	06/25/2025	35007	62871	RED WAVE COMMUNICATIONS & ELE	TROUBLESHOOT PM9 VAULT POWER ISSUES	1,767.33
Т	otal 35007:					15,310.82
35008						
06/25	06/25/2025	35008	62640	ROWLAND UNIFED SCHOOL DISTRIC	FIELD TRIP APRIL 2025-MINI SOLAR CHALLENGE	311.00
Т	otal 35008:					311.00
35009	06/05/0005	25000	60500	C & LCLIDDLY COMPANY INC	CURRULES FOR MAINS	040.00
06/25 06/25	06/25/2025 06/25/2025	35009 35009		S & J SUPPLY COMPANY, INC S & J SUPPLY COMPANY, INC	SUPPLIES FOR MAINS SUPPLIES FOR HYDRANTS	919.23 1,280.30
06/25	06/25/2025	35009		S & J SUPPLY COMPANY, INC	SUPPLIES FOR SERVICES	2,447.37
06/25	06/25/2025	35009		S & J SUPPLY COMPANY, INC	SUPPLIES FOR METERS	1,479.98
Т	otal 35009:					6,126.88
35010 06/25	06/25/2025	35010	62534	SHRED IT C/O STERICYCLE INC	SHREDDING SERVICE	158.58
Т	otal 35010:					158.58
25044						
35011 06/25	06/25/2025	35011	62601	SJ LYONS CONSTRUCTION INC	VAULT DOOR	5,360.15
06/25	06/25/2025	35011		SJ LYONS CONSTRUCTION INC	LOCKER ROOM REMODEL	8,800.00
06/25	06/25/2025	35011		SJ LYONS CONSTRUCTION INC	JOINT LINE CHLORAMINE BOOSTING SYSTEM	17,575.00
06/25	06/25/2025	35011		SJ LYONS CONSTRUCTION INC	RES 12 RCS BUILDING	131,622.50

Page: 11 Jul 01, 2025 01:22PM

	Issue Date	Number	Number	Payee	Description	Check Amount
To	otal 35011:					163,357.65
35012 06/25	06/25/2025	35012	62743	SOCAL SCADA SOLUTIONS LLC	SCADA ON CALL SERVICES	2,600.00
To	otal 35012:					2,600.00
35013 06/25 06/25	06/25/2025 06/25/2025	35013 35013		SOUTH COAST AQMD SOUTH COAST AQMD	ANNUAL RENEWAL-FACILITY ID 103956 EMISSIONS FEES-FACILITY ID 103956	1,131.26 170.94
To	otal 35013:					1,302.20
35014 06/25	06/25/2025	35014	62895	STAPLES	OFFICE SUPPLIES	600.53
To	otal 35014:					600.53
35015 06/25	06/25/2025	35015	62836	STETSON ENGINEERS INC.	PREPARATION/SUBMITTAL OF 2025 ANNUAL ASSE	334.75
To	otal 35015:					334.75
35016 06/25	06/25/2025	35016	2180	SWRCB-DWOCP	T3 RENEWAL-THOMAS COLEMAN	90.00
To	otal 35016:					90.00
35017 06/25	06/25/2025	35017	35	TERESA RYAN	MILEAGE REIMBURSEMENT	32.20
To	otal 35017:					32.20
35018 06/25	06/25/2025	35018	6725	TRENCH SHORING COMPANY	FOR LARGE METER REPLACEMENTS	748.56
To	otal 35018:					748.56
35019 06/25	06/25/2025	35019	62626	TRI COUNTY PUMP COMPANY	COI PS1 PUMPS 2 AND 3 MOTOR REHABS	25,744.05
To	otal 35019:					25,744.05
35020 06/25	06/25/2025	35020	6950	UNDERGROUND SERVICE ALERT	SERVICE ALERT	407.75
To	otal 35020:					407.75
35021 06/25	06/25/2025	35021	62537	URBAN FUTURES INC	CONTINUING DISCLOSURE AND COMPLIANCE SE	2,000.00
To	otal 35021:					2,000.00
35022 06/25	06/25/2025	35022	62850	VALLEY VISTA SERVICES INC	TRASH SERVICE	272.99

ROWLAND WATER DISTRICT

Page: 12 Jul 01, 2025 01:22PM

GI Check Check Vendor Description Check Payee Period Issue Date Number Number Amount Total 35022: 272.99 35023 382 W A RASIC CONSTRUCTION CO INC JOB 24TX61-36" BUTTERFLY VALVE INSTALL-COI 06/25 06/25/2025 35023 162,256.86 06/25 06/25/2025 382 W A RASIC CONSTRUCTION CO INC JOB 25SX67-VALVE REPLACEMENTS 15,174.69 35023 382 W A RASIC CONSTRUCTION CO INC 06/25 06/25/2025 JOB 25SX81-WATER LEAK REPAIR 35023 32,362.48 Total 35023: 209.794.03 35024 06/25 06/25/2025 35024 7700 WALNUT VALLEY WATER DISTRICT RECYCLED WATER 956.48 Total 35024: 956.48 35025 06/25 06/25/2025 35025 62618 WATER REPLENISHMENT DISTRIC OF 2025-2026 CENTRAL BASIN WATERMASTER SERVI .25 Total 35025: .25 35026 06/25 06/25/2025 35026 62927 WEST YOST AWIA CYBER ASSESSMENTS 4,110.75 06/25 06/25/2025 35026 62927 WEST YOST AWIA CYBER ASSESSMENTS 1,956.00 Total 35026: 6,066.75 35027 06/25 06/25/2025 62763 WESTERLY METER SERVICE CO LLC 5/8" - 1" SMALL METER TEST 35027 4,123.00 Total 35027: 4.123.00 35028 06/25 06/25/2025 35028 321 WIENHOFF DRUG TESTING INC **5 PANEL LAB TEST** 60.00 Total 35028: 60.00 6032025 06/25 06/03/2025 603202 1476 BUSINESS CARD (VISA) MISC EXPENSES 3,580.70 Total 6032025: 3,580.70 6102025 06/25 06/10/2025 610202 62849 HAYES AUTOMATION INC. WATER QUALITY TESTING SUPPLIES 1,657.13 Total 6102025: 1,657.13 6132025 62493 CADWAY INC (CAL DOMESTIC WATER WATER CHARGE 06/25 06/13/2025 613202 72,513.53 Total 6132025: 72,513.53 6242025 06/25 06/24/2025 624202 5800 SO CALIFORNIA EDISON OFFICE POWER 2,771.45 06/25 06/24/2025 624202 5800 SO CALIFORNIA EDISON **PUMPING POWER** 50.138.87 Total 6242025: 52,910.32

Jul 01, 2025 01:22PM

GL	GL Check Check Vendor eriod Issue Date Number Number				Description	Check
———		Number			<u> </u>	Amount
603202	55					
06/25	06/03/2025	603202	1070	AMERICAN EXPRESS	MISC EXPENSE	7,473.02
06/25	06/03/2025	603202	1070	AMERICAN EXPRESS	CONSERVATION EXPENSE	909.03
06/25	06/03/2025	603202	1070	AMERICAN EXPRESS	TOOLS & SUPPLIES	3,481.85
06/25	06/03/2025	603202	1070	AMERICAN EXPRESS	VEHICLE EXPENSE	1,926.72
06/25	06/03/2025	603202	1070	AMERICAN EXPRESS	RESEVOIR EXPENSE	1,699.34
06/25	06/03/2025	603202	1070	AMERICAN EXPRESS	CONFERENCE & MEETINGS	3,502.56
06/25	06/03/2025	603202	1070	AMERICAN EXPRESS	OFFICE SUPPLIES	666.48
06/25	06/03/2025	603202	1070	AMERICAN EXPRESS	SEMINAR & TRAINING	1,209.50
06/25	06/03/2025	603202	1070	AMERICAN EXPRESS	EQUIPMENT EXPENSE	408.83
06/25	06/03/2025	603202	1070	AMERICAN EXPRESS	UTILITY EXPENSE	140.39
06/25	06/03/2025	603202	1070	AMERICAN EXPRESS	LARGE METER REPLACEMENT EXPENSES	1,542.75
06/25	06/03/2025	603202	1070	AMERICAN EXPRESS	PERMITS	4,001.00
06/25	06/03/2025	603202	1070	AMERICAN EXPRESS	PERMIT	673.00
06/25	06/03/2025	603202	1070	AMERICAN EXPRESS	WATER AWARENESS FESTIVAL EXPENSES	1,297.75
06/25	06/03/2025	603202	1070	AMERICAN EXPRESS	COMMUNITY OUTREACH EXPENSE	750.00
06/25	06/03/2025	603202	1070	AMERICAN EXPRESS	GOTO CONNECT	709.93
06/25	06/03/2025	603202	1070	AMERICAN EXPRESS	SPECTRUM	899.00
06/25	06/03/2025	603202	1070	AMERICAN EXPRESS	CHATGPT PLUS	20.00
06/25	06/03/2025	603202	1070	AMERICAN EXPRESS	DIRECTV	100.99
06/25	06/03/2025	603202	1070	AMERICAN EXPRESS	CENTRAL COMMUNICATION	693.20
06/25	06/03/2025	603202	1070	AMERICAN EXPRESS	STARLINK	120.00
06/25	06/03/2025	603202	1070	AMERICAN EXPRESS	STARLINK	140.00
06/25	06/03/2025	603202	1070	AMERICAN EXPRESS	HIHELLO BUSINESS	1,566.00
06/25	06/03/2025	603202	1070	AMERICAN EXPRESS	CONSTANT CONTACT	2,963.95
T	otal 60320255	:				36,895.29
610202		0.4.0000	000.40			000.04
06/25	06/10/2025	610202	62849	HAYES AUTOMATION INC.	WATER QUALITY TESTING SUPPLIES	362.34
T	otal 61020252	:				362.34
610202	53					
06/25	06/10/2025	610202	62849	HAYES AUTOMATION INC.	WATER QUALITY TESTING SUPPLIES	1,920.63
-	atal 61000050					4.000.00
I.	otal 61020253	•				1,920.63
G	rand Totals:					2,392,616.26

Summary by General Ledger Account Number

GL Account	Debit	Credit	Proof
11200-0	273,600.00	.00	273,600.00
11505-0	324,086.15	319.34-	323,766.81
11507-0	25,777.19	.00	25,777.19
222100	1,149.34	2,393,765.60-	2,392,616.26
51110-0	72,513.53	.00	72,513.53
51310-0	905,604.60	830.00-	904,774.60
51410-1	4,195.63	.00	4,195.63
51410-2	3,894.68	.00	3,894.68
51410-3	3 2,729.45	.00	2,729.45
51410-5	15,928.07	.00	15,928.07
51410-6	31,129.77	.00	31,129.77

Check Issue Dates: 6/1/2025 - 6/30/2025

GL Account	Debit	Credit	Proof
51510-0	15,450.68	.00	15,450.68
51810-0	.25	.00	.25
51910-0	13,189.58	.00	13,189.58
52210-0	6,058.71	.00	6,058.71
52310-0	52,138.98	.00	52,138.98
54209-0	2,500.00	.00	2,500.00
54210-0	7,220.48	.00	7,220.48
54211-0	40,487.77	.00	40,487.77
54212-0	14,668.31	.00	14,668.31
54213-0	9,272.56	.00	9,272.56
54214-0	16,101.13	.00	16,101.13
54215-0	4,984.30	.00	4,984.30
54216-0	2,600.00	.00	2,600.00
54217-0	11,966.25	.00	11,966.25
54218-0	189,080.82	.00	189,080.82
54219-0	5,172.08	.00	5,172.08
56210-0	10,245.31	.00	10,245.31
56211-0	4,010.43	.00	4,010.43
56214-0	1,267.01	.00	1,267.01
56216-0	1,665.80	.00	1,665.80
56217-0	550.62	.00	550.62
56218-0	13,654.72	.00	13,654.72
56218-2	4,220.44	.00	4,220.44
56219-0	7,066.58	.00	7,066.58
56220-0	9,270.00	.00	9,270.00
56221-0	8,684.67	.00	8,684.67
56223-0	4,077.72	.00	4,077.72
56226-0	48,088.95	.00	48,088.95
56312-0	46,736.43	.00	46,736.43
56320-0	1,209.50	.00	1,209.50
56411-0	60,947.08	.00	60,947.08
56413-0	4,297.68	.00	4,297.68
56415-0	724.95	.00	724.95
56416-0	617.50	.00	617.50
56417-0	13,666.19	.00	13,666.19
56418-0	1,766.81	.00	1,766.81
56419-0	66.96	.00	66.96
56421-0	9,296.32	.00	9,296.32
56510-0	1,302.20	.00	1,302.20
56710-0	19,502.98	.00	19,502.98
56812-0	12,009.25	.00	12,009.25
57310-0	31,961.50	.00	31,961.50
57312-0	7,315.85	.00	7,315.85
57314-0	7,934.41	.00	7,934.41
57315-0	2,245.00	.00	2,245.00
57319-0	1,423.21	.00	1,423.21
57320-0	285.00	.00	285.00
57321-0	7,303.56	.00	7,303.56
Grand Totals:	2,394,914.94	2,394,914.94-	.00

ROWLAND WATER DISTRICT		Check Register - Check Issue I	Page: 15 Jul 01, 2025 01:22PM		
GL Account	Debit	Credit	Proof		
Report Criteria: Report type: GL detail					

Number	Check Iss	sue Date	Payee	Check Amount		
34958	06	6/17/2025 RHC	ccc		5,000.0	
Sequence So		Source	Description	GL Account	Amount	
•	1		PLATINUM SPONSORSHIP	56812-0	5,000.0	
34958	06	6/17/2025 RHC	ccc		-5,000.00	
	Sequence	Source	Description	GL Account	Amount	
	1		Void - PLATINUM SPONSORSHIP	56812-0	-5,000.00	
34958	06	6/17/2025 RHC	ccc		5,000.00	
	Sequence	Source	Description	GL Account	Amount	
•	1		PLATINUM SPONSORSHIP	56812-0	5,000.00	
35029	06	195.25				
	Sequence	Source	Description	GL Account	Amount	
	1	967457-50	DEPOSIT REFUND-18445 LA CORTITA	22810-0	195.25	
35030	06	6/25/2025 TRA	PEZE ENTERTAINMENT LLC		2,941.73	
	Sequence	Source	Description	GL Account	Amount	
•	1	9600320-01	DEPOSIT REFUND-CONSTRUCTION METER	22810-0	2,941.73	
35031	06	6/25/2025 CHII	H KAI HWANG		188.97	
	Sequence	Source	Description	GL Account	Amount	
•	1	943451-57	DEPOSIT REFUND-1633 BORK AVE	22810-0	188.97	
35032	2 06/25/2025 SUN DAWEI					
	Sequence	Source	Description	GL Account	Amount	
•	1	643801-75	DEPOSIT REFUND-18580 VANTAGE POINTE	22810-0	260.07	
35033	3 06/25/2025 MAG		GGIE LIU		78.75	
	Sequence	Source	Description	GL Account	Amount	
	1	536418-46	DEPOSIT REFUND-2712 WESTBOURNE	22810-0	78.75	
Grand Tot	tals:				8,664.77	
					0,004.7	

ROWLAND WATER DISTRICT CASH AND INVESTMENTS

As of May 31, 2025

								0/ 5	
Description / True		Shares /	Purchase	Current		Current	0	% of	
Description / Type	Term	Units Held	Price	Price	Maturity Date	Yield	Current Value	Portfolio	
Cash Citizens Business Bank							\$ 3,420,211		
Total Cash	N1/A					4.070/		00.45%	
Local Agency Investment Fund (LAIF)	N/A					4.27%	\$ 9,393,436	38.45%	
Citizens Trust Investments (US Bank Custodian)			400.000		44/7/0000	. ===/		4.000/	
Fed'l Home Loan Mtg. Corp BND9	3 Year	300,000	100.0000	99.3080	11/7/2028	4.55%	\$ 297,924	1.22%	
Fed'l Home Loan Mtg. Corp A4H3 Fed'l Home Loan Mtg. Corp 4C27	3 Year 5 Year	500,000 350,000	100.0000 100.0000	100.0120 99.4140	1/21/2028 7/29/2025	4.62% 0.70%	\$ 500,060 \$ 347,949	2.05% 1.42%	
Fed I National Mtg. Corp 4027 Fed'l National Mtg. Assn 4XZ1	5 Year	200,000	100.0000	99.7130	6/30/2025	0.74%	\$ 199,426	0.82%	
Fed'l National Mtg. Assn AX89	3 Year	400,000	99.5500	99.6590	7/21/2028	4.11%	\$ 398,636	1.63%	
Fed'l National Mtg. Assn A5M7	3 Year	300,000	99.9800	99.9300	1/13/2028	4.55%	\$ 299,790	1.23%	
Fed'l National Mtg. Assn AZT1	3 Year	400,000	100.0000	99.9500	3/2/2029	4.63%	\$ 399,800	1.64%	
Fed'l Home Loan Banks - L7D0	5 Year	200,000	99.7900	99.1080	8/26/2025	0.50%	\$ 198,216	0.81%	
Fed'l Home Loan Banks - LGR9	5 Year	500,000	100.0000	97.4970	2/26/2026	0.87%	\$ 487,485	2.00%	
Fed'l Home Loan Banks - LLD4	5 Year	250,000	99.9250	97.3470	3/17/2026	0.90%	\$ 243,368	1.00%	
Fed'l Home Loan Banks - MUX8	5 Year	200,000	99.9300	97.2270	3/30/2026	0.90%	\$ 194,454	0.80%	
Fed'l Home Loan Banks - P6M2	5 Year	200,000	100.0000	95.9920	9/30/2026	1.06%	\$ 191,984	0.79%	
Fed'l Home Loan Bank - Q7E7	5 Year	200,000	99.9050	97.1480	6/30/2026	1.54%	\$ 194,296	0.80%	
Fed'l Home Loan Bank - QJD6 Fed'l Home Loan Bank - 2TD7	4 Year 4 Year	200,000 500,000	99.7190 100.0000	96.4150 99.4350	10/27/2026 6/23/2028	1.56% 4.07%	\$ 192,830 \$ 497,175	0.79% 2.03%	
Fed'l Home Loan Bank - 5ZE1	3 Year	500,000	100.0000	99.8010	4/28/2028	4.07 %	\$ 497,175 \$ 499,005	2.03%	
Fed'l Home Loan Bank - 6CN4	5 Year	200,000	100.0000	99.6580	5/3/2030	4.14%	\$ 199,316	0.82%	
Fed'l Home Loan Bank - 3ED1	3 Year	500,000	100.0000	99.5750	10/21/2027	4.17%	\$ 497,875	2.04%	
Fed'l Home Loan Bank - 5MR6	5 Year	400,000	99.9590	100.1700	3/20/2030	4.24%	\$ 400,680	1.64%	
Fed'l Home Loan Bank - 6LD6	3 Year	200,000	100.0000	100.0000	5/26/2028	4.25%	\$ 200,000	0.82%	
Fed'l Home Loan Bank - 36C2	4 Year	700,000	100.0000	99.5650	10/10/2028	4.27%	\$ 696,955	2.85%	
Fed'l Home Loan Bank - 3G72	3 Year	200,000	100.0000	99.6600	10/22/2027	4.26%	\$ 199,320	0.82%	
Fed'l Home Loan Bank - 6JZ0	2 Year	300,000	100.0000	99.9740	11/22/2027	4.25%	\$ 299,922	1.23%	
Fed'l Home Loan Bank - 4RC7	3 Year	500,000	100.0000	100.5420	7/27/2029	4.48%	\$ 502,710	2.06%	
Fed'l Home Loan Bank - 3NZ2	2 Year	500,000	99.9250	99.8650	8/13/2027	4.51%	\$ 499,325	2.04%	
Fed'l Home Loan Bank - 5QY7	2 Year	400,000	100.0000	99.9300	9/24/2027	4.52%	\$ 399,720	1.64%	
Fed'l Home Loan Bank - 5AV0	3 Year	300,000	100.0000	99.8580	2/25/2028	4.56%	\$ 299,574	1.23%	
Fed'l Home Loan Bank - 4P70 Fed'l Home Loan Bank - WLZ1	5 Year 2 Year	500,000 180,000	100.0000 99.9180	100.6540 100.5970	1/10/2030 6/12/2026	4.57% 4.72%	\$ 503,270 \$ 181,075	2.06% 0.74%	
Fed'l Home Loan Bank - WS92	2 Year	200,000	99.8530	100.3370	9/12/2025	4.72%	\$ 200,266	0.74%	
Fed'l Home Loan Bank - 0UQ0	3 Year	500,000	100.0000	100.2850	4/15/2027	4.99%	\$ 501,425	2.05%	
Air Prods & Chems Inc 8BB1	5 Year	255,000	104.1940	98.9510	10/15/2025	1.52%	\$ 252,325	1.03%	
Apple Inc 3BZ2	2 Year	300,000	94.5180	98.1020	8/4/2026	2.50%	\$ 294,306	1.20%	
Apple Inc 3CJ7	3 Year	200,000	96.8220	98.8400	2/9/2027	3.39%	\$ 197,680	0.81%	
Applied Matls Inc - 2AS4	4 Year	200,000	100.5370	101.9830	6/15/2029	4.71%	\$ 203,966	0.83%	
Applied Matls Inc - 2AS4	4 Year	200,000	100.0650	101.9830	6/15/2029	4.71%	\$ 203,966	0.83%	
Deere John Capital - EWT2	2 Year	150,000	100.5690	100.5070	3/3/2026	5.02%	\$ 150,761	0.62%	
Emerson Elec Co - 1BQ6	4 Year	200,000	90.3290	92.5640	12/21/2028	2.16%	\$ 185,128	0.76%	
Florida Pwr & Lt Co - 1GN1	3 Year	200,000	99.6340	100.4600	5/15/2028	4.38%	\$ 200,920	0.82%	
Florida Pwr & Lt Co - 1GN1	3 Year	200,000	100.4060	100.4600	5/15/2028	4.38%	\$ 200,920	0.82%	
Home Depot Inc 6BN1	2 Year	200,000	93.7730	97.5040	9/15/2026	2.18%	\$ 195,008	0.80%	
Home Depot Inc - 6CWO Honeywell International - 6BL9	4 Year 2 Year	200,000 150,000	100.7790 94.6540	102.2030 97.3940	4/15/2029 11/1/2026	4.79% 2.57%	\$ 204,406 \$ 146,091	0.84% 0.60%	
Honeywell International - 6CL8	4 Year	200,000	98.6090	99.5640	1/15/2029	4.27%	\$ 199,128	0.82%	
John Deere Capital Corporation - EXB0	4 Year	200,000	101.1140	102.0940	11/1/2026	4.85%	\$ 204,188	0.84%	
Texas Instruments - 8CE2	3 Year	400,000	100.6293	100.5820	2/8/2027	4.57%	\$ 402,328	1.65%	
Texas Instruments - 8CG7	4 Year	200,000	99.9590	101.1120	2/8/2029	4.55%	\$ 202,224	0.83%	
Toyota Mtr Corp - THP3	2 Year	200,000	93.8350	98.6470	10/16/2025	0.81%	\$ 197,294	0.81%	
Toyota Mtr Corp - TLB9	3 Year	200,000	101.5440	102.7440	9/11/2028	5.11%	\$ 205,488	0.84%	
Cash Reserve Account						4.20%	\$ 469,119	1.92%	
Total Citizens Trust Investments							\$ 15,039,076	61.55%	
Total Investments							\$ 24,432,512	_	
Total Cash & Investments							\$ 27,852,723	_	
. o.a. ouon a mrosuments							¥ 21,032,123	-	

Market values determined on last business day of the month. All listed investments comply with the District's Statement of Investment Policy as established in Resolution 2-2007. The District's available cash and investment portfolio provides sufficient cash flow and liquidity to meet all normal obligations for at least a six-month period of time.

NOTE: All interest values show above are based on annual rates of return.

ROWLAND WATER DISTRICT PROFIT & LOSS (Unaudited)

May 2025

	STRIC						
		May-25	Year-to-Date (YTD)	Budget (Annual)	Under / (Over) Budget	YTD Budget %	Prior YTD (Unaudited)
1	OPERATING REVENUE						
2	Water Sales	\$ 1,433,262	\$ 16,139,524	\$ 17,115,100	\$ 975,576	94%	\$ 14,388,161
3	Meter Charges	1,073,744	11,627,971	12,650,700	1,022,729	92%	11,236,667
4	Customer Fees	21,463	995,594	377,500	(618,094)	264%	795,603
5	Contract Income	-	224,851	214,400	(10,451)	105%	235,497
6	RWD Labor Sales/Reimbursements	8,302	239,503	235,800	(3,703)	102%	247,289
7	Capacity Fees	-	104,331	50,000	(54,331)	209%	132,766
8	Flow Tests	1,625	18,850	16,600	(2,250)	114%	17,225
9	Return Check Fees	360	5,220	7,200	1,980	73%	7,470
10	Uncollectable	-	-	(59,500)	(59,500)	0%	-
11	TOTAL OPERATING REVENUE	2,538,755	29,355,844	30,607,800	1,251,956	96%	27,060,679
12	NON-OPERATING REVENUE						
13	Property Taxes	78,575	546,113	436,800	(109,313)	125%	512,897
14	Interest Income	17,254	713,147	600,000	(113,147)	119%	522,480
15	Miscellaneous Income -	1	146,964	25,000	(121,964)	588%	14,749
16	TOTAL NON-OPERATING REVENUE	95,830	1,406,223	1,061,800	(344,423)	132%	1,050,125
17	TOTAL REVENUES	2,634,586	30,762,067	31,669,600	907,533	97%	28,110,804
18	OPERATING EXPENSES						
19	Source of Supply						
20	Water Purchases	1,004,081	11,060,414	11,670,800	610,386	95%	9,628,765
21	Pumping Power	42,204	464,032	522,300	58,268	89%	445,948
22	Fixed Charges	26,748	325,104	322,100	(3,004)	101%	233,972
23	Chemicals	8,527	87,449	86,000	(1,449)	102%	70,436
24	Total Source of Supply	1,081,560	11,936,999	12,601,200	664,201	95%	10,379,121
25	Maintenance of Water System	284,848	1,099,878	818,200	(281,678)	134%	716,249
26	Service Contracts	33,223	369,893	458,900	89,007	81%	417,440
27	Assessments	2,625	235,753	296,200	60,447	80%	211,243
28	Vehicle Expense	4,124	132,564	163,600	31,036	81%	177,147
29	Tools & Supplies	8,428	48,640	44,200	(4,440)	110%	38,853
30	Equipment Expense	22,873	74,103	39,400	(34,703)	188%	42,494
31 32	Maintenance & Operations	1,558 90,864	78,159 245,520	100,000 200,000	21,841 (45,520)	78% 123%	113,151 226,352
33	Engineering Water Tests	2,413	27,670	25,000	(2,670)	111%	24,308
34	Conservation	1,925	58,207	57,300	(907)	102%	62,707
35	Community Outreach	15,096	148,978	188,700	39,722	79%	103,994
36	TOTAL OPERATING EXPENSES	1,549,537	14,456,363	14,992,700	536,337	96%	12,513,057
37	ADMINISTRATIVE EXPENSES						
38	Liability Insurance	-	305,745	226,900	(78,845)	135%	202,487
39	IT Support Services	13,532	134,462	139,200	4,738	97%	169,540
40	IT Licensing	44,201	326,817	313,400	(13,417)	104%	286,238
41	Director Expense	13,666	144,189	198,500	54,311	73%	140,240
42	Bank / Management Fees	27,032	285,022	294,100	9,078	97%	212,557
43	Legal Fees	7,057	155,417	158,500	3,083	98%	143,803
44	Compliance	8,801	170,735	183,600	12,865	93%	145,452
45	Auditing & Accounting	-	25,950	35,000	9,050	74%	32,130
46	Utility Services	7,494	110,636	133,900	23,264	83%	118,346

ROWLAND WATER DISTRICT PROFIT & LOSS (Unaudited)

May 2025

		May-25	Year-to-Date (YTD)	Budget (Annual)	Under / (Over) Budget	YTD Budget %	Prior YTD (Unaudited)
47	Dues & Memberships	-	63,646	65,900	2,254	97%	56,010
48	Conference & Meetings	4,078	62,988	47,700	(15,288)	132%	45,088
49	Office Expenses	3,465	29,852	31,800	1,948	94%	18,561
50	Seminars/Training	7,831	91,128	118,300	27,172	77%	94,311
51	Miscellaneous Expense	13,723	145,457	154,100	8,643	94%	111,984
52	TOTAL ADMINISTRATIVE EXPENSES	150,879	2,052,044	2,100,900	48,856	98%	1,776,748
53 54	PERSONNEL EXPENSES Wages						
55	Operations	96,339	1,064,080	1,396,600	332,520	76%	1,104,392
56	Distribution	115,048	1,244,577	1,438,000	193,423	87%	1,042,992
57	Administration	147,973	1,634,355	1,868,200	233,845	87%	1,506,888
58	Total Wages	359,360	3,943,011	4,702,800	759,789	84%	3,654,271
59	Payroll Taxes	27,727	270,277	334,800	64,523	81%	255,313
60	Workers Compensation	-	61,578	106,800	45,222	58%	58,246
61	Unemployment	-	4,116	6,200	2,084	66%	4,712
62	CalPERS	55,002	675,593	791,200	115,607	85%	535,060
63	OPEB Contributions	=	-	=	-	0%	-
64	EE & Retiree Health Insurance	83,715	869,060	1,027,900	158,840	85%	834,070
65	TOTAL PERSONNEL EXPENSES	525,804	5,823,637	6,969,700	1,146,064	84%	5,341,672
66	TOTAL EXPENSES	2,226,219	22,332,043	24,063,300	1,731,257	93%	19,631,477
67	NET INCOME / (LOSS) - BEFORE DEBT SERVICE & CAPITAL EXPENDITURES	408,367	8,430,024	7,606,300	(823,724)	111%	8,479,327
68 69	Less: Total Debt Service Less: CalPERS (Bond Debt Savings)	(350,885) -	(2,441,784) -	(2,441,800)	16 -	100% 0%	(2,093,986)
70	Less: Capital Expenses (Current Year)	(408,903)	(1,871,225)	(4,513,300)	2,642,075	41%	(2,483,173)
71	CASH INCREASE / (DECREASE)	\$ (351,422)	\$ 4,117,015	\$ 651,200	\$ 3,465,815		\$ 3,902,169

^{*}No assurance is provided on these financial statements. The financial statements do not include a statement of cash flows. Substantially all disclosures required by accounting principles generally accepted in the United States are not included.

Profit & Loss Analysis and Variance Report

May 2025

1. OPERATING REVENUE

- 2. <u>Water Sales</u> volumetric water sales revenue from all customer types including residential, commercial, public, industrial, recycled and construction. YTD is at 94%.
- 3. <u>Meter Charges</u> the fixed monthly base rate charged to water customers each month (includes all customer types). YTD is at 92%.
- 4. <u>Customer Fees</u> various fees conditionally charged to customers such as penalties, new service connections, reconnections, backflow administration, cross connections, connections and recycled water checks/inspections. These types of fees are unpredictable in nature and can often trend over/under expected budget. YTD is at high of 264% due to new service connections.
- 5. Contract Income contains revenues from cell tower lease contracts. YTD is at 105%.
- RWD Labor Sales/Reimbursements water sold on construction invoices, City of Industry labor sales and Puente Basin Water Agency (PBWA) and Pomona-Walnut-Rowland Joint Water Line Commission (PWR JWLC) treasurer fees. The frequency and amounts of these revenues are unknown and can occasionally trend over/under budget due to their unpredictable nature. YTD is at 102%.
- 7. <u>Capacity Fees</u> fees imposed on any property or person requesting a new, additional or larger connection to the District's potable water system (fees vary by meter size). These receipts are uncertain and can trend over/under budget due to their unpredictable nature. YTD is high at 209% due to capacity fees on new service connections.
- 8. <u>Flow Tests</u> fire flow tests performed by District personnel to measure the volume of water available at a specific hydrant (\$350 per test). YTD is at 114%.
- Return Check Fees customers are charged a fee when the District is paid with insufficient funds checks and checks are returned by the bank. These receipts are uncertain and can trend over/under budget due to their unpredictable nature. YTD is currently at 73%.
- 10. <u>Uncollectable</u> the District analyzes customer receivables at the end of each year and recognizes an expense equal to the estimated amount of cash that may not be collected. Uncollectable expense will be zero until assessed at the year-end audited financial statements.

11. TOTAL OPERATING REVENUE

12. NON-OPERATING REVENUE

Profit & Loss Analysis and Variance Report

May 2025

- 13. <u>Property Taxes</u> includes tax contributions from the County of Los Angeles. YTD is high at 125% due to residual tax revenue from the Redevelopment Property Tax Trust Fund.
- 14. <u>Interest Income</u> includes interest and dividends received on District investments. YTD is high at 119% due to higher returns on investments.
- 15. <u>Miscellaneous Income</u> includes income from various sources such as recycling and refunds. YTD is high at 588% due to a vendor refund.
- 16. TOTAL NON-OPERATING REVENUE
- 17. TOTAL REVENUES
- 18. OPERATING EXPENSES
- 19. SOURCE OF SUPPLY
- 20. <u>Water Purchases</u> Includes variable costs of potable water from Three Valleys Municipal Water District (TVMWD) and California Domestic Water Company (CalDomestic), and recycled water purchases from City of Industry and Walnut Valley Water District (WVWD). YTD is 95%.
- 21. <u>Pumping Power</u> the cost of electricity used for pumping water. YTD is at 89%.
- 22. Fixed Charges includes fixed charges from TVMWD and CalDomestic. YTD is at 101%.
- 23. Chemicals the cost of chemicals used to treat water sold to customers. YTD is at 102%.

24. TOTAL SOURCE OF SUPPLY

- 25. <u>Maintenance of Water System</u> the costs of repairs and maintenance on elements of the District water system such as main lines, services, meters, reservoirs, valves, hydrants, and telemetry system. YTD is high at 134% due to system leaks.
- 26. <u>Service Contracts</u> includes costs for services such as billing printing and mailing, bulk paper shredding, copier leasing and services, landscaping, janitorial, uniforms, security system monitoring and maintenance, Caselle maintenance and support, Harmony renewal and other services. YTD is at 81%.
- 27. <u>Assessments</u> operating costs billed to RWD for their share of PWR JWLC, which is billed quarterly, and PBWA, which is billed monthly. YTD can trend over/under budget due to the timing of billing. YTD is at 80%.
- 28. <u>Vehicle Expense</u> includes repair and maintenance costs for District vehicles as well as the cost of fuel. YTD can trend over/under budget due to the timing of truck maintenance and fuel purchases. YTD is at 81%.

Profit & Loss Analysis and Variance Report

May 2025

- 29. <u>Tools & Supplies</u> small tools and supplies used in the field. YTD can trend over/under budget due to the timing of tools and supplies. YTD is at 110%.
- 30. <u>Equipment Expense</u> various costs incurred related to District equipment. YTD can trend over/under budget due to the timing of equipment expenses. YTD is high at 188% due to repairs and maintenance on District equipment.
- 31. <u>Maintenance & Operations</u> various costs incurred for District maintenance and operations not directly related to the water system. YTD can trend over/under budget due to the timing of maintenance and operations. YTD is at 78%.
- 32. <u>Engineering</u> general engineering costs related to District operations. YTD is high at 123% due to compliance work related to water use efficiency standards.
- 33. Water Tests laboratory testing and sampling of District water. YTD is at 111%.
- 34. <u>Conservation</u> water conservation programs and efforts. YTD is high 102% due to timing of conservation programs.
- 35. <u>Community Outreach</u> costs related to public relations and community outreach. YTD is at 79%.

36. TOTAL OPERATING EXPENSES

37. ADMINISTRATIVE EXPENSES

- 38. <u>Liability Insurance</u> coverage through ACWA JPIA for the District insurance package. YTD is high at 135% due to higher ACWA JPIA insurance rates increase.
- 39. IT Support Services information technology support services. YTD is at 97%.
- 40. IT Licensing includes costs for various software licenses. YTD is at 104%.
- 41. <u>Director Expense</u> costs for director compensation and benefits. YTD is at 73% of budget.
- 42. <u>Bank/Management Fees</u> includes various banking fees, Paymentus and InvoiceCloud fees (for processing customer payments) and investment administrative fees. YTD is at 97%.
- 43. <u>Legal Fees</u> legal costs related to RWD, PBWA and Public Water Agencies Group (PWAG). YTD is at 98%.
- 44. <u>Compliance</u> includes costs for State Water Resources Control Board (SWRCB) compliance, LA County property taxes, various employee certifications, District permits, and maintenance costs for equipment compliance. YTD is at 93%.

Profit & Loss Analysis and Variance Report

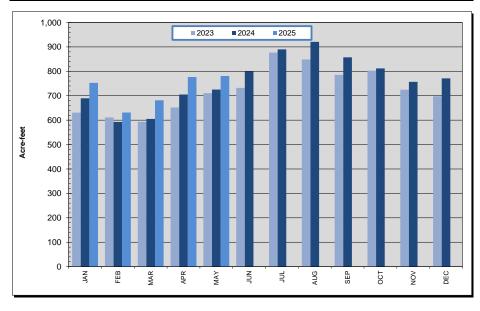
May 2025

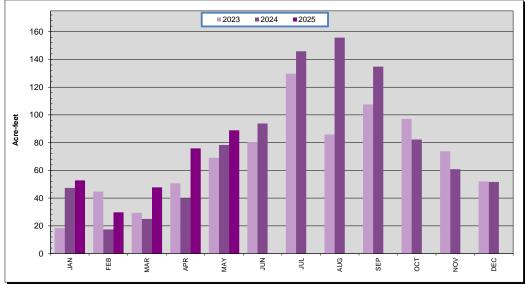
- 45. <u>Auditing & Accounting</u> includes consulting services for complex accounting matters and annual audit assurance services related to District financial reporting. YTD is at 74%.
- 46. <u>Utility Services</u> costs related to office electricity, office phones, gas and district cell phones. YTD is at 83%.
- 47. <u>Dues & Memberships</u> costs for district memberships, dues and subscriptions to various agencies such as the Water Education Foundation, Association of California Water Agencies, Urban Water Institute, California Special Districts Association and American Water Works Association. YTD is high at 97% due to timing of membership dues and subscriptions.
- 48. <u>Conference & Meetings</u> conference attendance and meeting expenses. YTD is high at 132% due to conference and meeting opportunities for directors and employees.
- 49. Office Expenses costs for office supplies, postage, printing and stationery. YTD is at 94%.
- 50. <u>Seminars/Training</u> employee seminars and training. YTD is at 77%.
- 51. <u>Miscellaneous Expense</u> includes costs for travel, books & subscriptions, and miscellaneous general expenses. YTD is at 94%.
- **52. TOTAL ADMINISTRATIVE EXPENSES**
- 53. PERSONNEL EXPENSES
- **54. WAGES**
- 55. Operations wages expense (regular, standby, OT) attributable to Operations. YTD is at 76%.
- 56. <u>Distribution</u> wages expense (regular, standby, OT) attributable to Distribution. YTD is at 87%.
- 57. Administration wages expense (regular) attributable to Administration. YTD is at 87%.
- 58. TOTAL WAGES
- 59. Payroll Taxes employer payroll taxes paid by the District. YTD is trending at 81%.
- 60. <u>Workers Compensation</u> the District is billed quarterly for workers compensation insurance which can occasionally cause this line item to trend over/under expected budget. YTD is at 58%.
- 61. <u>Unemployment</u> state unemployment insurance is paid quarterly which can cause this line to occasionally trend over/under expected budget. YTD is at 66%.

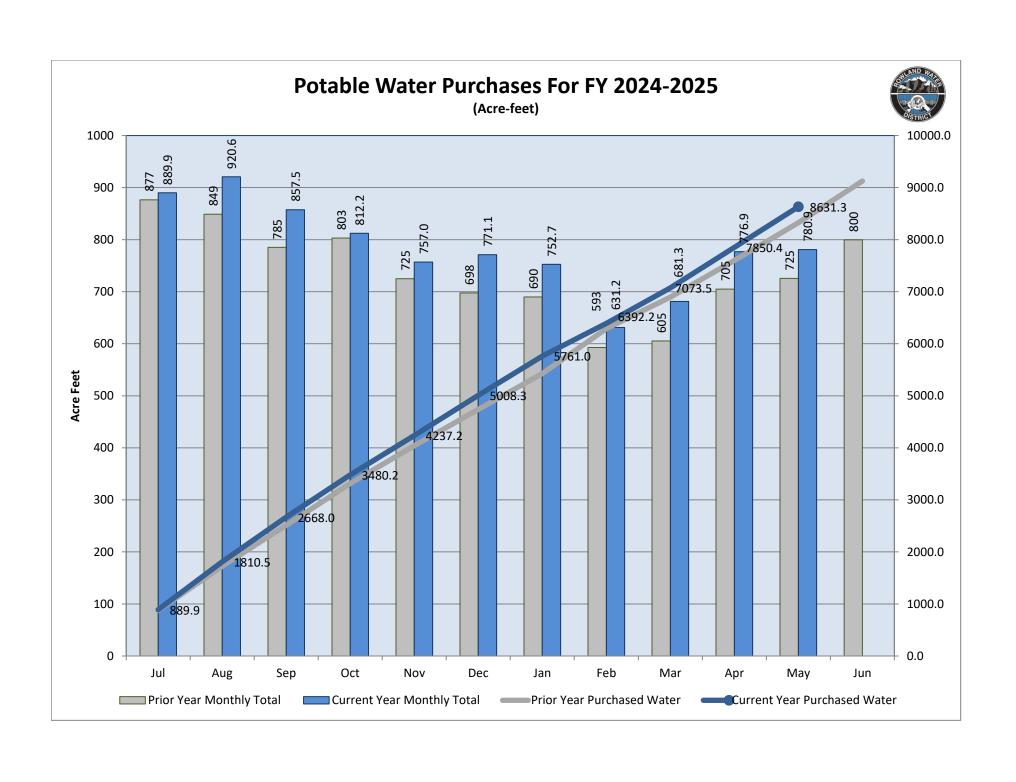
Profit & Loss Analysis and Variance Report

May 2025

- 62. <u>CalPERS</u> includes retirement costs for employee pension plans through the California Public Employee Retirement System. Contributions are made monthly and an annual payment is made at the beginning of each fiscal year for the plan's unfunded accrued liability. YTD is at 85%.
- 63. OPEB Contributions includes retirement costs for other post-employment benefits that provides medical, dental and vision coverage. There will be no OPEB contributions for the current fiscal year as the Public Agency Retirement Services (PARS) trust is fully funded.
- 64. <u>EE & Retiree Health Insurance</u> includes the cost of health, dental, vision, life, and disability insurance for current employees as well as health insurance for retired employees. YTD is at 85%.
- **65. TOTAL PERSONNEL EXPENSES**
- 66. **TOTAL EXPENSES**
- 67. **NET INCOME / (LOSS) BEFORE DEBT SERVICE & CAPITAL EXPENSES** Financially, the District has performed as expected through May 2025.
- 68. <u>Less: Total Debt Service</u> includes interest and principal payments on outstanding District debt as well as related administrative expenses. Interest payments on outstanding debt are made twice per year (December/June).
- 69. <u>Less: CalPERS (Bond Debt Savings)</u> includes bond debt refunding savings for paying down the CalPERS unfunded accrued liability. Payments are made in December and June. There will be no CalPERS Bond Debt Savings for the current fiscal year
- 70. <u>Less: Capital Expenses (Current-Year)</u> includes expenses related to current-year district projects and capital assets, excluding projects funded by bond proceeds (debt). YTD is at 41%.
- 71. CASH INCREASE / (DECREASE)




Water Purchases for CY 2025 (Acre-feet)



	POTABLE SYSTEM						
	WBS	LHH	PM-9	PM-22		JWL	
					PM-15	Miramar	TOTAL
JAN	131.4	0.0	0.0	240.8	121.1	259.4	752.7
FEB	145.9	0.0	0.0	209.3	195.1	80.9	631.2
MAR	153.5	0.0	0.0	250.3	67.4	210.1	681.3
APR	170.1	0.0	0.0	277.1	71.4	258.3	776.9
MAY	168.7	0.0	0.0	291.0	75.7	245.5	780.9
JUN							0.0
JUL							0.0
AUG							0.0
SEP							0.0
OCT							0.0
NOV							0.0
DEC							0.0
TOTAL	769.6	0.0	0.0	1,268.5	530.7	1,054.2	3,623.0

RECYCLED SYSTEM							
Well 1	Wet Well	WVWD	Industry	Potable Make-up	Nogales Dewatering	Fullerton Dewatering	TOTAL
0.0	17.4	1.0	21.6	0.0	12.8	0.0	52.8
0.0	10.4	0.0	7.2	0.0	12.2	0.0	29.8
3.1	10.4	1.0	19.7	0.0	13.6	0.0	47.8
28.6	10.0	1.0	23.6	0.0	12.7	0.0	75.9
24.2	19.8	2.0	29.8	0.0	13.1	0.0	88.9
							0.0
							0.0
							0.0
							0.0
							0.0
							0.0
							0.0
55.9	68.0	5.0	101.9	0.0	64.4	0.0	295.2

CURRENT CONDITIONS: MAJOR WATER SUPPLY RESERVOIRS:29-JUN-2025 Data as of Midnight: 29-Jun-2025 966 Hist Avg 600 Change Date: 29-Jun-2025 300 4552 3425 0 4000 3000 New Bullards Bar Hist Avg Hist Avg LEGEND 3000 109% 2000 (Hist. Avg.) Blue Bar: Storage level for date (Total Cap.) 2000 Gold Bar: Total reservoir capacity 1000 977 Green Line: Historic level for date. 1000 Hist Avg 600 Ω 0 300 Capacity Historical Shasta Oroville (TAF) Avg Mark 107% 120% 95% Folsom (Hist. Avg.) (Hist. Avg.) (Total Cap.) (Total Cap.) 86% 111% (Total Cap.) % of Capacity | % Hist. Avg. (Click res. 3 char. code for details) \$17 2448 Hist Avg 150 2000 Hist Avg Camanche 110% 1000 (Hist. Avg.) (Total Cap.) 2400 2030 0 2000 Trinity Hist Avg 117% 90% Hist Avg 1000 (Hist. Avg.) (Total Cap.) 1000 2041 0 New Melones Don Pedro 1000 Hist Ava 381 121% 114% 76% 94% Hist Avg (Total Cap.) (Hist. Avg.) (Hist. Avg.) (Total Cap.) San Luis 88% 111% 1025 (Total Cap.) (Hist. Avg.) Hist Ava 254.5 325 McClure 193.3 Hist Ava Hist Ava list Avg 124% 88% (Total Cap.) (Hist. Avg.) Castaic 112% 117% 109% 84% 95% 94% (Total Cap.) (Hist. Avg.) (Total Cap.) (Hist. Avg.) (Total Cap.) (Hist. Avg.) 1000 810 521 Hist Ava 500 Hist Avg 500 Hist Ava 200 200 Diamond Valley Pine Flat Millerton 127% 105% 87% 102% (Total Cap.) (Hist. Avg.) (Total Cap.) (Hist. Avg.) (Hist. Avg.) (Total Cap.)

Click to download printable version of current data.

Report Generated: 30-Jun-2025 1:22 PM

The CSI link has been disabled to zoom in, for the lack of historical data.

JULY 2025 - DIRECTOR REIMBURSEMENTS

					Additional Comments
					(Submit expense report if
Director	Date of	Meeting/Event Attended	Reimbursement		claiming mileage and/or
J.:: 5000.	Meeting/Event				meal reimbursement)
					, , , , , , , , , , , , , , , , , , , ,
Anthony J. Lima					
	6/4/2025	TVMWD Board Meeting	\$230.00		Mileage
	6/5/2025	PBWA	\$230.00		
	6/10/2025	RWD Board Meeting	\$230.00		
	6/12/2025	P-W-R Joint Water Line Commission	\$230.00		Mileage
	6/18/2025	TVMWD Board Meeting	\$230.00		Mileage
		TOTAL PAYMENT	\$1,150.00		
John Bellah					
	6/4/2025	TVMWD Board Meeting	\$230.00		Mileage
	6/5/2025	RWD Meeting - Helopad Discussion		Х	
	6/9/2025	GAC	\$230.00		
	6/10/2025	RWD Board Meeting	\$230.00		Mileage
	6/12/2025	P-W-R Joint Water Line Commission	\$230.00		
	6/16/2025	RHCCC	\$230.00		
	6/18/2025	TVMWD Board Meeting	\$230.00		
	6/26/2025	TVMWD Leadership Breakfast		Χ	
	6/26/2025	RWD Landscape Workshop	\$230.00		
		TOTAL PAYMENT	\$1,610.00		
Robert W. Lewis					
	6/5/2025	PBWA	\$230.00		
	6/10/2025	RWD Board Meeting	\$230.00		
	6/26/2025	TVMWD Leadership Breakfast		Χ	
		TOTAL PAYMENT	\$460.00		
Szu Pei Lu-Yang					
		No Meetings to Report for June 2025			
		TOTAL PAYMENT	\$0.00		
Vanessa Hsu					
		No Meetings to Report for June 2025			
		TOTAL PAYMENT	\$0.00		

APPROVED FOR PAYMENT:

Tom Calenna

Tom Coleman

Voting receipt - CSDA 2025 Board of Directors

Receipt code: QBRV

Time of vote: 2025-06-09 12:59:33 America/Los_Angeles

IP address: 64.183.110.195

CSDA Board of Directors Election Ballot - Term 2026 - 2028; Seat B - Southern Network

Please vote for your choice: Don Bartz

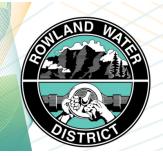
1/1

Occupational Excellence Achievement Award

2025 Recipient

Rowland Water District Rowland Heights, CA

Lorraine M. Martin President & CEO


CERTIFICATE

Of Appreciation

This certificate is proudly presented for your Contributions to our Community and support to the Rowland Heights Community Coordinating Council.

Rowland Water District

Yvette Romo President

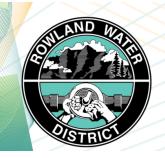
Community Relations & Education July 2025 Update

COMMUNITY RELATIONS & OUTREACH ENGAGEMENT

Water Quality Report- The District's Water Quality Report may be easily accessed via the District's website or requested as a physical copy. The community learned about the publication the report through various social media channels such as NextDoor, Instagram, X, Facebook, LinkedIn and our customer e-newsletter. Outreach for the availability of this report will continue throughout July and into August in celebration of Water Quality Month.

2025 Landscape Classes- On June 26, the District hosted an in-person California Friendly and Native Plants Landscape Training. This was the first of seven workshops scheduled for 2025. These classes will continue in hybrid format, alternating between in-person sessions and live webinars to provide participants with flexibile attendance options.

Direct Install Program- The District's Residential Water Survey and Irrigation Retrofit Program is underway. This initiative, which is funded by a \$25,000 MAAP grant, is designed to assist customers in conserving water and managing costs through a two-part approach.


To date, we have had 58 total Residential Water Survey (RWS) requests since the launch of the program, and WaterWise Consulting, Inc. has performed 30 RWS and 6 installs.

Conservation Campaign- The next phase of the conservation campaign, yard signs, is being finalized. In addition to posting these signs strategically throughout the District's service area, customers will be able to request a yard sign for their home or business. The digital message board will also be used for messaging purposes. Following the yard sign campaign, we will update fleet tailgates to match messaging from the light post banners and yard signs. Staff will actively promote the new conservation mandates through media outreach, customer engagement, and incentive programs.

EDUCATIONAL OUTREACH

Mini Solar Challenge- To ensure ample sunshine during the races for the 2025-2026 school year, the program schedule has been adjusted so that the race will now kick off the program in October. Staff is working with participating teachers to develop some adjustments to the curriculum and program.

<u>Other Water Education/Outreach Activities</u> - Staff continues attending monthly Conservation and Education Team (CET) meetings. Teachers are encouraged to visit: https://pwagcet.org/ for resources on water-related lessons and grants.

Community Relations & Education July 2025 Update

Community Outreach Events

Blood Drive- The District will partner with LifeStream to host a community blood drive on October 10, 2025, at the District headquarters. District staff aims to meet or surpass the success of July 2024's blood drive which collected 25 donations.

Buckboard Days Parade- The Buckboard Days Parade is schedule for October 18, 2025. District staff has commenced brainstorming float theme ideas. Members of the Board, staff and their family members will be invited to ride on the District's float to demonstrate our ongoing support for the community.

Industry Hills Pro Rodeo – The District is serving as "Rodeo Partner Sponsor" to the October 18, 2025, Industry Hills Charity Pro Rodeo. This sponsorship package inclues an ad in the event program books and rodeo tickets.

SOCIAL MEDIA

Rowland Water District continually posts updates regarding District information, careers in water, conservation, and water education. These posts are shared on Facebook, Instagram, X, Nextdoor, and LinkedIn and YouTube when necessary.

CONSTANT CONTACT- Electronic information sent to customer emails.

Total Active Contacts-19,602

Water Quality Report- June 24, 2025-Open Rate 53.7 %

COMMUNICATIONS BOARD REPORT

Rowland Water District July 2025

District Outreach

- New look
 - Incorporate into media releases
 - Update board reports

Press Releases/Media

- Annual Budget
- Poster Contest
- Water Quality Report
- Antelope Valley Press First Public Hydrogen article

Industry Press

- RWD/NorWD Mentoring Partnership (PUBLISHED)
 - CSDA long-lead article in CSDA.net
 - ACWA newsletter piece in conjunction w/City of Santa Ana (in process)

Video Projects

- Revise lobby video w/updated photography
- Review new look opportunities in current videos

Additional Comments

- Communications planning
 - Multi-lingual effort
 - Award submission

EARNED MEDIA

About Us Contact Us Subscribe Forms Letters to Editor Promotions

Another entity joins hydrogen board

Rowland district is part of joint powers

By JULIE DRAKE Valley Press Staff Writer Apr 18, 2025 Updated Apr 21, 2025 💂 0

The First Public Hydrogen Authority Board of Directors with Mayor. R. Rex Parris as chairman meets Thursday in the City of Industry council chambers.

Screenshot

Blogs

International Water Partnership Strengthens Communities Across Borders

By Morgan Leskody

Reliable Water, Lasting Impact

Rowland Heights, CA "Caring for our Neighbors" isn't only a motto at Rowland Water District (RWD), it is the organization's guiding principle. And that extraordinary commitment reaches far beyond the service area, across the Pacific to the Philippines and Norzagary Water District (NorWD), Initially a technical exchange, the transformative partnership brings hope, resilience, and sustainable solutions to both utilities and ultimately their customers.

RWD and NorWD have a lot in common as water providers. RWD serves a 17.2-square-mile area in southeastern Los Angeles County, providing potable and recycled water to approximately 55,000 residents through 13,500 service connections. NorWD has a total of 19,131 active connections covering nine out of thirteen barrangays. The district currently serves 69,2% of Norzagaray's total population of approximately 136,000.

www.csda.net/blogs/morgan-leskody/2025/05/27/international-water-partnership-strengthens-commun

In the Philippines, the RWD team engaged in NorWD's daily challenges, participating in site visits, strategic sessions, and hands-on exercises with staff to identify operational needs. Budgets, tariffs, and strategic sessions, and hands-on exercises with staff to identify operation customer billing systems were all part of the overall learning experience.

"As a finance person, I was particularly impressed with how the NorWD team makes the most of their operations despite budget constraints," Mainer added.

In February 2025, five members of the NorWD staff traveled to RWD on a reciprocal journey, experiencing firsthand the district's operational efficiencies, customer service strategies, and long-term planning. They participated in workshops including advanced metering technology, emergency response planning, and financial best practices – all critical in building and advancing resilient water systems.

This visit has been an enlightening and instructive experience for us," said NorWD General Manager Almer Cruz, known simply as "GM" among the team. "Witnessing Rowland Water Districts tremendous efficiency and firm commitment to its customers has given us powerful insight. We look forward to taking these lessons home and using them to improve our own water operation and facilities for our

The exchange underscored the power of collaboration, proving that by sharing knowledge and passion for its customers and stakeholders, both districts can create lasting impacts on their communities.

Over a week-long period in October 2024, RWD General Manager Tom Coleman, Assistant General Over a week-long period in October 2024, RWD General Manager from Coleman, Assistant General Manager Dusty Moislo, and Director of Finance Myry Maliner led a team over 7,000 miles to mentor NorWD, sharing knowledge and expertise in distribution, operations, financial planning, and outreach. The shared experience reinforced the human impact of access to reliable water. Through a series of learning processes and a formal Memorandum of Understanding, the partnership ensures lasting collaboration for the future.

Supported by the Asian Development Bank's Water Organizations Partnership for Resilience (WOP4R) program and the Netherlands-based engineering firm Royal HaskoningDHV (RIDHY), the program tackles critical water infrastructure and operations issues in a region where millions do not take safe drinking water for granted. RWD's mentorship is helping NorWD improve operations, reduce service disruptions, and enhance water quality, delivering real, life-changing benefits to the communities they

For RWD General Manager Tom Coleman, the Impact is equally profound. He has supported this idea, not just to help his counterparts across the globe, but to strengthen his own team. "When our employees see firsthand the challenges our colleagues face, they return more engaged, more committed, and more passionate about the service they provide to our customers," Coleman said. "This

relationship isn't just about technical expertise—it's about building stronger people, better leaders, and a deeper sense of purpose. It reminds us all why we do what we do." The experience was especially meaningful for Mainer who appreciated seeing 'operations in action.'

"Giving back to the country where I grew up, where my work ethic and personal values were shaped, was incredibly fulfilling," she shared. "This went beyond a professional journey—it was deeply personal."

Marking a significant milestone in the partnership, a formal board meeting was held at Rowland Wate. Marking a significant influencement of perforeshing a formal obario frieding was need at rowards water District on February 25th. NorWD staff had the opportunity to observe RWD's governance in action wit representatives from both districts solidifying their commitment to collaboration by signing a Memorandum of Understanding (MOU). This agreement formalizes their dedication to enhance water infrastructure, improve operational efficiencies, and implement sustainable water management

"We were honored to welcome the team from Norzagaray Water District as part of our ongoing commitment to care for our neighbors, right next door and across the globe, "said RWD Board Preside join Bellah." By working tog the challenges of an ever-changing water industry."

Beyond technical and operational training, transparency and team building took center stage for both districts. RWD and NorWD partnered with Breaking the Chain Consulting, a firm specializing in organizational development and leadership training. Through CliffonStrengths assessments, team members identified their core talents allowing for better alignment of roles, a more collaborative workforce, and enhanced productivity.

"When individuals are placed in positions where they can thrive, teams become more cohesive, resilient, and innovative in problem-solving," Teresking the Chain CEO Jim Uh 18ad. "It was a privilege to see these two cultures come together and take part in such a meaningful exchange of ideas."

w.csda.net/blogs/morgan-leskody/2025/05/27/international-water-partnership-strengthens-co

https://www.csda.net/blogs/morgan-leskody/2025/05/27/international-water-partnership-strengthens-commun

6/26/25, 4:30 PM

International Water Partnership Strengthens Communities Across Borders

"This experience has been rewarding in so many important ways," said RWD Assistant General Manager Dusty Moisio. "Not only have we been able to share our work experience, but we've also been able to study our differences and learn additional ways to approach challenges in our own operations."

Kristine Hayo, Program Specialist at RHDHV, emphasized the broader impact of international partnerships. "This collaboration is an example of how knowledge-sharing across borders can strengthen water resilience. It is partnerships like these that create long-term improvements in water management and community well-being." RHDHV Team Leader and Facilitator Henry Manguerra's team focused on facilitating the partnership between RWD and NWD, identifying several plans for improvement, including reducing non-revenue water, enhancing performance monitoring, and improving asset management through technical training for district personnel. "The challenges may differ, but the commitment to sustainable water management is universal," he added.

With ADB covering major expenses for the reciprocal program, both organizations benefit. Since 2007, ADB has supported numerous partnerships worldwide that have improved service coverage, financial sustainability, and operational efficiency.

Looking ahead, both districts plan to document key lessons learned, set examples for additional cross-border partnerships, and share their experiences with other communities and institutions. An open platform will be developed to highlight further improvement options and innovations from this alliance among districts and teams, with the hope of inspiring similar initiatives worldwide.

For Coleman, this partnership is more than a professional endeavor—it's a reaffirmation of why public service matters

"At the end of the day, this is about people," he said. "Clean, reliable water isn't just infrastructure—it's dignity, health, and opportunity. And when we come together, we can make a difference that spans generations."

#FeatureNews

0 comments 9 views

Related Content

What's In Your Bottle?

https://www.csda.net/blogs/morgan-leskody/2025/05/27/international-water-partnership-strengthens-community-blogs/morgan-leskody/2025/05/27/international-water-partnership-strengthens-community-blogs/morgan-leskody/2025/05/27/international-water-partnership-strengthens-community-blogs/morgan-leskody/2025/05/27/international-water-partnership-strengthens-community-blogs/morgan-leskody/2025/05/27/international-water-partnership-strengthens-community-blogs/morgan-leskody/2025/05/27/international-water-partnership-strengthens-community-blogs/morgan-leskody/2025/05/27/international-water-partnership-strengthens-community-blogs/morgan-leskody/2025/05/27/international-water-partnership-strengthens-community-blogs/morgan-leskody/2025/05/27/international-water-partnership-strengthens-community-blogs/morgan-leskody/2025/05/27/international-water-partnership-strengthens-community-blogs/morgan-leskody/2025/05/27/international-water-partnership-strengthens-community-blogs/morgan-leskody/2025/05/27/international-water-partnership-strengthens-community-blogs/morgan-leskody/2025/05/27/international-water-partnership-strengthens-community-blogs/morgan-leskody/2025/05/27/international-water-partnership-strengthens-community-blogs/morgan-leskody/2025/05/27/international-water-partnership-strengthens-community-blogs/morgan-leskody/2025/05/27/international-water-partnership-strengthens-community-blogs/morgan-leskody/2025/05/2020/05/20

5/7

California Building Industry Association

California Special **Districts Association**

LEAGUE OF

CITIES

____** Rébuild SoCal **Partnership**

CALIFORNIA STATE FLORAL ASSOCIATION

HealthyPlants.org

Western

California Blueberry Association

Plant Health

WESTERN AGRICULTURAL PROCESSORS
ASSOCIATION

MesaWater **DISTRICT**®

CALIFORNIA BEAN SHIPPERS

CALIFORNIA

Service Beyond Expectation

CALIFORNIA ASSOCIATION of WINEGRAPE GROWERS

WORKING FOR OUR COMMUNITY

Agricultural Council

of California

AS VIRGENE

MUNICIPAL

TER DISTRIC

Bellflower-Somerset

ngthening the Voice of Business

CAMROSA

BUILDING WATER SELF-RELIANCE

Valley Water

WATER AND

POWER

black

voice

bvn

CALIFORNIA FARM

WATER COALITION

West Valley Water District

DESERT WATER

MCWRA

CONTRA COSTA WATER DISTRICT

The Honorable Diane Papan Chair, Assembly Water Parks and Wildlife Committee 1020 N Street, Suite 160 Sacramento, CA 95814

RE: SB 72 (Caballero) The California Water Plan: long term supply targets - SUPPORT

Dear Chair Papan,

The California Municipal Utilities Association (CMUA), California State Association of Counties (CSAC), and California Council for Environmental and Economic Balance (CCEEB) are very proud co-sponsors of SB 72 (Caballero). We, along with the coalition of organizations above, are pleased to support SB 72.

California is in a race against climate change, which is pressured by multi-year droughts, floods, fires, and other intensifying climate change impacts. Consequently, there is an urgent need for California to develop aspirational targets that will complement and amplify Governor Newsom's Water Supply Strategy and extend beyond any single Administration. Given the extreme climate impacts of the 21st century, an expanding economy, a growing population, the anticipated reductions from existing water resources, and the controls on the use of groundwater, California needs to align the state's water supply strategy and policies with a target that will result in an adequate and reliable water supply for all beneficial uses including the environment, agriculture, the economy, and all Californians. Recent research estimates a shortfall in California's future water supply between 4.6 and 9 million acre-feet annually by 2050 if the state takes no action.

SB 72 will establish excellent policy because it will bring about the fundamental changes that are necessary to ensure a sustainable water future. SB 72 will do the following:

- Transform water management in California taking us from a perpetual state of supply vulnerability to a reliable and sufficient water supply that is adequate for all beneficial uses, including urban, agriculture, and the environment.
- Create a new "North Star" water supply planning target for 2040 that the state will need to work toward, along with a process to develop a target for 2050.
- Preserve the California way of life, supplying water to our homes and communities, habitat and environment, recreation and tourism, and business and economic success.
- Support economic vitality for all businesses, from restaurants to technology companies, and employers that depend on a reliable water supply.
- Fulfill the generational responsibility to develop a water system that will adapt to changes in the environment and allow the state to thrive now and for future generations.

The California Water Plan is the strategic plan for managing and developing water resources for current and future generations in the state. SB 72 works within the structure of the current California Water Plan, which hasn't been meaningfully updated for decades. SB 72 updates the California Water Plan for a 21st century climate.

For these reasons, we urge your support and "Aye" Vote for SB 72. If you have any questions about our position, please contact Andrea Abergel with CMUA at aabergel@cmua.org or (916) 841-4060.

Sincerely,

Andrea Abergel
Director of Water
California Municipal Utilities Association

Graham Knaus
Executive Director
California State Association of Counties

Tim Carmichael President/CEO CCEEB

Debbie Murdock Executive Director

Association of California Egg Farmers

Julia Bishop Hall

Senior Legislative Advocate

Association of California Water Agencies

Adrian Covert

Senior VP, Public Policy

Bay Area Council

Steve Lenton General Manager

Bellflower Somerset Mutual Water Company

Nicole Helms Executive Director

California Alfalfa and Forage Association

Todd W. Sanders Executive Director

California Apple Commission

Claudia Carter
Executive Director

California Association of Wheat Growers

Natalie Collins President

California Association of Winegrape Growers

Jane Townsend Executive Director

California Bean Shippers Association

Todd Sanders
Executive Director

California Blueberry Association

Dan Dunmoyer
President and CEO

California Building Industry Association

Kristopher Anderson Policy Advocate

California Chamber of Commerce

Roger Isom President/CEO

California Cotton Ginners and Growers Assoc.

Alex Biering

Senior Policy Advocate California Farm Bureau **Daniel Hartwig**

President

California Fresh Fruit Association

Chris Zanobini President/CEO

California Grain and Feed Association

Lance Hastings
President & CEO

California Manufacturers & Technology Assoc.

Chris Zanobini Executive Director

California Pear Growers Association

Chris Zanobini

Executive Vice-President California Seed Association

Ann Quinn

Executive Vice President

California State Floral Association

Robert Verloop

Executive Director/CEO California Walnuts

Ann Quinn

Executive Vice President

California Warehouse Association

Sharron Zoller President

California Women for Agriculture

Kristine McCaffrey General Manager

Calleguas Municipal Water District

Tom Moody General Manager City of Corona

Patricia Lock Dawson

Mayor

City of Riverside

Elizabeth Espinosa County of Riverside

J. M. Barrett General Manager

Coachella Valley Water District

John Bosler, P.E.

General Manager and CEO Cucamonga Valley Water District

Mark Orcutt
President & CEO

East Bay Leadership Council

Joe Mouawad, P.E. General Manager

Eastern Municipal Water District

Jim Abercrombie General Manager

El Dorado Irrigation District

Greg Thomas General Manager

Elsinore Valley Municipal Water District

Joe Gagliardi

Chief Executive Officer

Folsom Chamber of Commerce

Jason Phillips

CEO

Friant Water Authority

Christopher Valdez

President

Grower-Shipper Association

Paul Cook

General Manager

Irvine Ranch Water District

David Pedersen General Manager

Las Virgenes Municipal Water District

Matt Hurley General Manager McMullin Area GSA

Paul Shoenberger, P.E. General Manager Mesa Water District **Kevin Abernathy**

Manager

Milk Producers Council

Jimi Netniss

General Manager

Modesto Irrigation District

Justin Scott-Coe General Manager

Monte Vista Water District

Patrick Ellis

ACE/ President/CEO

Murrieta/Wildomar Chamber of Commerce

John Kabateck State Director

National Federation of Independent Business

Joanne Webster Chief Executive Officer

North Bay Leadership Council

David Guy

Executive Director

Northern California Water Association

Todd Sanders
Executive Director

Olive Growers Council of California

Kim Thorner General Manager

Olivenhain Municipal Water District

Chris Zanobini Executive Officer

Pacific Coast Renderers Association

Debbie Murdock Executive Director

Pacific Egg and Poultry Association

Dennis LaMoreaux General Manager Palmdale Water District

Jason Martin

Interim General Manager
Rancho California Water District

Jon Switalski
Executive Director
Robuild So. Cal Partnersh

Rebuild So-Cal Partnership

Tom Coleman General Manager Rowland Water District

Lisa Yamashita-Lopez General Manager

Rubio Cañon Land and Water Association

Amanda Blackwood President & CEO

Sac Metropolitan Chamber of Commerce

Miguel J. Guerrero P.E. General Manager

San Bernardino Municipal Water Department

Heather Dyer General Manager

San Bernardino Valley Municipal Water District

Paul Helliker General Manager San Juan Water District

Matt Stone General Manager

Santa Clarita Valley Water Agency

Chris Lee

General Manager

Solano County Water Agency

Peter M. Rietkerk General Manager

South San Joaquin Irrigation District

Eric McLeod Chair

Southwest California Legislative Council

Justin M. Hopkins General Manager

Stockton East Water District

Jeff R. Pape General Manager

Temescal Valley Water District

Matthew Litchfield General Manager

Three Valleys Municipal Water District

Fernando Paludi General Manager

Trabuco Canyon Water District

Brad Koehn General Manager

Turlock Irrigation District

Kirti Mutatkar President & CEO United Ag

Vince Gin, P.E.

Deputy Operating Officer

Valley Water

Elizabeth Howard Espinosa UCC Advocacy Team

Urban Counties of California

Bob Reeb

Executive Director

Valley Ag Water Coalition

Gary Arant

General Manager

Valley Center Municipal Water District

Erik Hutchman

P.E. General Manager

Walnut Valley Water District

E.J. Caldwell General Manager

West Basin Municipal Water District

Valerie Pryor General Manager Zone 7 Water Agency

Roger Isom
President/CEO

Western Agricultural Processors Association

Dave Puglia
President & CEO
Western Growers

Sharon Haligan

Director, Administrative Services

Western Plant Health

Craig Miller General Manager

Western Municipal Water District

Norman Huff General Manager Camrosa Water District

Chris Berch General Manager

Jurupa Community Services District

Brian R. Laddusaw General Manager

Rubidoux Community Services District

James Prior General Manager

San Gabriel County Water District

Jeff Mosher General Manager

Santa Ana Watershed Project Authority

Jose Martinez General Manager

Valley County Water District

John Thiel General Manager

West Valley Water District

Sarah Wiltfong
Director of Advocacy
BizFed Los Angeles County

Amber Bolden

Director of Communications

Black Voice News

Jeff Montejano

CEO

Building Industry Assoc. of Southern CA

Mandip Samra General Manager

Burbank Water and Power

Melanie Barker President

California Association of Realtors

Robert C. Lapsley

President

California Business Roundtable

Greg Johnson President

California Farm Water Coalition

Julian Canete
President and CEO

California Hispanic Chambers of Commerce

Jennifer Capitolo Executive Director

California Water Association

Sheri Merrick Executive Director

Citrus Heights Chamber of Commerce

Jeremy Smith Council Member City of Canyon Lake

Joe Males Mayor

City of Hemet

Natasha Johnson Council Member City of Lake Elsinore

Chris Barajas
Council Member
City of Jurupa Valley

Dr. Lisa DeForest Mayor Pro Tem City of Murrieta

Paul Leon Mayor

City of Ontario

Daniel E. Garcia

Interim General Manager
City of Riverside Public Utilities

Connie Stopher Executive Director

Economic Development Coalition

Ana Martin

Governmental Affairs Manager

Greater Riverside Chambers of Commerce

Eric Keen

Chairman of Board of Directors

HDR Engineering

Jack Monger

CEO

Industrial Environmental Association

Wes Andree Executive Director

Jurupa Mountain Discovery Center

Ana Martin Staff Liaison

Monday Morning Group of Riverside

Judi Penman
President & CEO

San Bernardino Area Chamber of Commerce

Luis Portillo President & CEO

San Gabriel Valley Economic Partnership

Aziz Amiri CEO

San Gabriel Valley Regional Chamber of Commerce

Adam Ruiz

Governmental Affairs Director

SRCAR

Molly Kirkland

Director of Public Affairs

Southern CA Rental Housing Association

Stephan Tucker General Manager

Water Replenishment District

Steve Johnson General Manager Desert Water Agency Jared Macias

Administrative Office

Puente Basin Water Agency

Melissa Sparks-Kranz, MPP Legislative Affairs Lobbyist League of California Cities

Dan Denham General Manager

San Diego County Water Authority

David M. Merritt General Manager

Kings River Conservation District

Steven Haugen Watermaster

Kings River Water Association

Kat Wuelfing General Manager

Mid-Peninsula Water District

Jennifer Pierre General Manager State Water Contractors

Mauricio Guardado General Manager

United Water Conservation District

Robb Grantham General Manager

Santa Margarita Water District

Harvey De La Torre General Manager

Municipal Water District of Orange County

Charles Wilson Executive Director

Southern California Water Coalition

Glenn Farrel Executive Director

CalDesal

Casey Creamer President

California Citrus Mutual

Tricia Geringer

Vice President of Government Affairs Agricultural Council of California

John Urdi

Executive Director Mammoth Lakes Tourism

Lacy Schoen
President/CEO

Brea Chamber of Commerce

Gina Molinaro-Cardera Board Supervisor

Dublin Chamber of Commerce

Lance Eckhart General Manager

San Gorgonio Pass Water Agency

Jim Piefer

Executive Director

Regional Water Authority

Federico Barajas Executive Director

San Luis & Delta Mendota Water Authority

Ernesto A. Avila Board President

Contra Costa Water District

Caroline Schirato Board Chair

Utica Water and Power Authority

Julee Malinowski-Ball

Lobbvist for

California Fire Chiefs Association

Julee Malinowski-Ball

Lobbyist for

Fire Districts Association of California

Justin Caporusso Executive Director

Mountain Counties Water Resources Assoc

Brenley McKenna Managing Director WateReuse California Randy Schoellerman

President

California Groundwater Coalition

Neil McCormick

CEO

California Special Districts Association

Krista Bernasconi

Mayor

City of Roseville

Tim Worley

Managing Director

Community Water Systems Alliance

Sue Mosburg
Executive Director
CA-NV AWWA

Jacob Asare

State Government Affairs Manager Associated Equipment Distributors

Deven Upadhyay General Manager

Metropolitan Water District of Southern

California

Shivaji Deshmukh, P.E. General Manager

Inland Empire Utilities Agency

Jessica Gauger

Director of Legislative Advocacy & Public Affairs California Association of Sanitation Agencies

Craig Kessler
Executive Director

California Alliance for Golf

Carlos Quintero
General Manager
Sweetwater Authority

Caity Maple

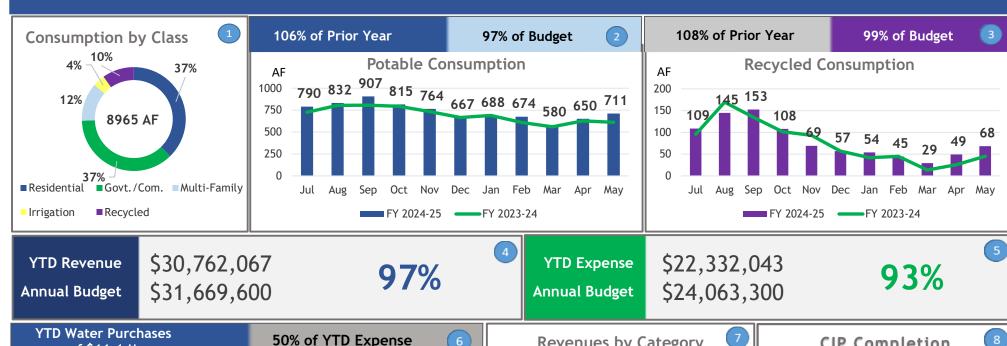
Councilmember – District 5

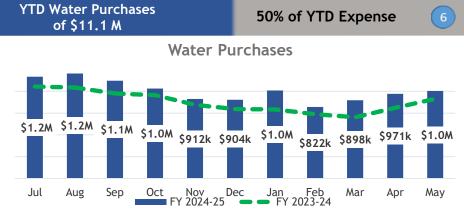
City of Sacramento

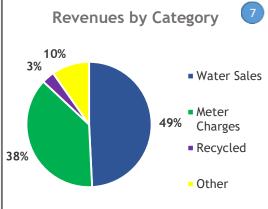
Austin Ewell
Executive Director
Water Blueprint for the San Joaquin Valley
Advocacy Fund

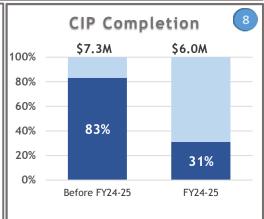
Ted Trimble General Manager Western Canal Water District Jeff Payne Assistant General Manager Westlands Water District

Eric Will Policy Advocate Rural County Representatives of California


William Vanderwaal General Manager Tehama-Colusa Canal Authority




ROWLAND WATER DISTRICT FINANCIAL DASHBOARD



May 31, 2025

Paperless Bills Auto Pay

Phone Calls